首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure reveal...  相似文献   

2.
3.
The AlkB family demethylases AlkB, FTO, and ALKBH5 recognize differentially methylated RNA/DNA substrates, which results in their distinct biological roles. Here we identify key active‐site residues that contribute to their substrate specificity. Swapping such active‐site residues between the demethylases leads to partially switched demethylation activities. Combined evidence from X‐ray structures and enzyme kinetics suggests a role of the active‐site residues in substrate recognition. Such a divergent active‐site sequence may aid the design of selective inhibitors that can discriminate these homologue RNA/DNA demethylases.  相似文献   

4.
Cysteine dioxygenase (CDO) is a vital enzyme for human health involved in the biodegradation of toxic cysteine and thereby regulation of the cysteine concentration in the body. The enzyme belongs to the group of nonheme iron dioxygenases and utilizes molecular oxygen to transfer two oxygen atoms to cysteinate to form cysteine sulfinic acid products. The mechanism for this reaction is currently disputed, with crystallographic studies implicating a persulfenate intermediate in the catalytic cycle. To resolve the dispute we have performed quantum mechanics/molecular mechanics (QM/MM) calculations on substrate activation by CDO enzymes using an enzyme monomer and a large QM active region. We find a stepwise mechanism, whereby the distal oxygen atom of the iron(II)-superoxo complex attacks the sulfur atom of cysteinate to form a ring structure, followed by dioxygen bond breaking and the formation of a sulfoxide bound to an iron(IV)-oxo complex. A sulfoxide rotation precedes the second oxygen atom transfer to the substrate to give cysteine sulfinic acid products. The reaction takes place on several low-lying spin-state surfaces via multistate reactivity patterns. It starts in the singlet ground state of the iron(II)-superoxo reactant and then proceeds mainly on the quintet and triplet surfaces. The initial and rate-determining attack of the superoxo group on the cysteinate sulfur atom involves a spin-state crossing from singlet to quintet. We have also investigated an alternative mechanism via a persulfenate intermediate, with a realignment of hydrogen bonding interactions in the substrate binding pocket. However, this alternative mechanism of proximal oxygen atom attack on the sulfur atom of cysteinate is computed to be a high-energy pathway, and therefore, the persulfenate intermediate is unlikely to participate in the catalytic cycle of CDO enzymes.  相似文献   

5.
The Escherichia coli AlkB protein was recently found to repair cytotoxic DNA lesions 1-methyladenine and 3-methylcytosine by using a novel iron-catalyzed oxidative demethylation mechanism. This protein belongs to a family of 2-ketoglutarate-Fe(II)-dependent dioxygenase proteins that utilize iron and 2-ketoglutarate to activate dioxygen for oxidation reactions. We report here the overexpression and isolation of the native Fe(II)-AlkB with a bound cofactor, 2-ketoglutarate, directly from E. coli. UV-vis measurements showed an absorption peak at 560 nm, which is characteristic of a bidentate 2-ketoglutarate bound to an iron(II) ion. Addition of excess amounts of single-stranded DNA to this isolated Fe(II)-AlkB protein caused a 9 nm shift of the 560 nm band to a higher energy, indicating a DNA-binding-induced geometry change of the active site. X-ray absorption spectra of the active site iron(II) in AlkB suggest a five-coordinate iron(II) center in the protein itself and a centrosymmetric six-coordinate iron(II) site upon addition of single-stranded DNA. This geometry change may play important roles in the DNA damage-searching and damage-repair functions of AlkB. These results provide direct evidence for DNA binding to AlkB which modulates the active site iron(II) geometry. The isolation of the native Fe(II)-AlkB also allows for further investigation of the iron(II) center and detailed mechanistic studies of the dioxygen-activation and damage-repair reactions performed by AlkB.  相似文献   

6.
Cationic meso(4‐N‐methylpyridyl)‐based metallocorroles, μ‐oxo iron corrole dimer ( 1b ) and manganese corrole monomer ( 2b ), were synthesized and characterized. The interactions of these two metal corrole complexes with CT‐DNA were studied by UV–visible, fluorescence and circular dichroism spectroscopic methods, as well as by viscosity measurements. The results revealed that 1b interacts with CT‐DNA in a difunctional binding mode, i.e. non‐classical intercalation and outside groove binding with H‐aggregation, while 2b can interact with CT‐DNA via an outside groove binding mode only. The binding constants Kb of 1b and 2b were 4.71 × 105 m ?1 and 2.17 × 105 m ?1, respectively, indicating that 1b can bind more tightly to CT‐DNA than 2b . Furthermore, both complexes may cleave the supercoiled plasmid DNA efficiently in the presence of hydrogen peroxide or tert‐butyl hydroperoxide (TBHP), albeit 1b exhibited a little higher efficiency. The inhibitor tests suggested that singlet oxygen and high‐valent (oxo)iron(VI) corrole or (oxo)manganese(V) corrole might be the active intermediates responsible for the oxidative DNA scission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Dps proteins (DNA‐binding protein from starved cells) are hollow‐sphere‐shaped, dodecameric enzymes found in bacteria and archaeal species. They can oxidize ferrous iron in a controlled manner using hydrogen peroxide or molecular oxygen as co‐substrate, and most of them confer physical protection through DNA binding. Oxidized iron is stored, as a mineral core, in a central cavity. Direct evidence is now provided that, furthermore, Dps proteins containing small mineral cores can oxidize and mineralize toxic ferrous ions in anaerobic conditions and in the absence of any additional aqueous oxidant co‐substrate. Dps proteins containing cores of 24 irons per dodecamer can oxidize about 5 ferrous irons per dodecamer, with that number approximately doubling for protein particles containing in average 96 irons per protein. This additional activity carries importance as it can be a detoxification mechanism present during anaerobic or oxygen‐limited growth conditions.  相似文献   

8.
Reactions of N,N‐dimethylaniline (DMA) with nonheme iron(IV)‐oxo and iron(IV)‐tosylimido complexes occur via different mechanisms, such as an N‐demethylation of DMA by a nonheme iron(IV)‐oxo complex or an electron transfer dimerization of DMA by a nonheme iron(IV)‐tosylimido complex. The change in the reaction mechanism results from the greatly enhanced electron transfer reactivity of the iron(IV)‐tosylimido complex, such as the much more positive one‐electron reduction potential and the smaller reorganization energy during electron transfer, as compared to the electron transfer properties of the corresponding iron(IV)‐oxo complex.  相似文献   

9.
Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C?H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron‐oxygen intermediates like iron(III)‐hydroperoxo and high‐valent iron‐oxo species have been trapped and identified in investigations of these bio‐inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio‐inspired nonheme iron systems to form the high‐valent iron‐oxo intermediates.  相似文献   

10.
The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N(6) atom of adenine. The observation of oxidation of a carbon at N(6) in EA prompted us to evaluate N(6)-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo.  相似文献   

11.
The retaining glycosyltransferase GalNAc‐T2 is a member of a large family of human polypeptide GalNAc‐transferases that is responsible for the post‐translational modification of many cell‐surface proteins. By the use of combined structural and computational approaches, we provide the first set of structural snapshots of the enzyme during the catalytic cycle and combine these with quantum‐mechanics/molecular‐mechanics (QM/MM) metadynamics to unravel the catalytic mechanism of this retaining enzyme at the atomic‐electronic level of detail. Our study provides a detailed structural rationale for an ordered bi–bi kinetic mechanism and reveals critical aspects of substrate recognition, which dictate the specificity for acceptor Thr versus Ser residues and enforce a front‐face SNi‐type reaction in which the substrate N‐acetyl sugar substituent coordinates efficient glycosyl transfer.  相似文献   

12.
N‐alkylisonitrile, a precursor to isonitrile‐containing lipopeptides, is biosynthesized by decarboxylation‐assisted ‐N≡C group (isonitrile) formation by using N‐alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2‐oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four‐electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X‐ray structures of iron‐loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that ‐N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV‐oxo‐catalyzed hydroxylation. It is likely followed by decarboxylation‐assisted desaturation to complete isonitrile installation.  相似文献   

13.
Iron(IV)–oxo intermediates are involved in oxidations catalyzed by heme and nonheme iron enzymes, including the cytochromes P450. At the distal site of the heme in P450 Compound I (FeIV–oxo bound to porphyrin radical), the oxo group is involved in several hydrogen‐bonding interactions with the protein, but their role in catalysis is currently unknown. In this work, we investigate the effects of hydrogen bonding on the reactivity of high‐valent metal–oxo moiety in a nonheme iron biomimetic model complex with trigonal bipyramidal symmetry that has three hydrogen‐bond donors directed toward a metal(IV)–oxo group. We show these interactions lower the oxidative power of the oxidant in reactions with dehydroanthracene and cyclohexadiene dramatically as they decrease the strength of the O? H bond (BDEOH) in the resulting metal(III)–hydroxo complex. Furthermore, the distal hydrogen‐bonding effects cause stereochemical repulsions with the approaching substrate and force a sideways attack rather than a more favorable attack from the top. The calculations, therefore, give important new insights into distal hydrogen bonding, and show that in biomimetic, and, by extension, enzymatic systems, the hydrogen bond may be important for proton‐relay mechanisms involved in the formation of the metal–oxo intermediates, but the enzyme pays the price for this by reduced hydrogen atom abstraction ability of the intermediate. Indeed, in nonheme iron enzymes, where no proton relay takes place, there generally is no donating hydrogen bond to the iron(IV)–oxo moiety.  相似文献   

14.
Several strategies have evolved to repair one of the abundant UV radiation‐induced damages caused to DNA, namely the mutagenic pyrimidine (6‐4) pyrimidone photolesions. DNA (6‐4)‐photolyases are enzymes repairing these lesions by a photoinitiated electron transfer. An important aspect of a possible repair mechanism is its generality and transferability to different (6‐4) lesions. Therefore, previously suggested mechanisms for the repair of the T(6‐4)T lesion are here transferred to the T(6‐4)C and C(6‐4)T lesions and investigated theoretically using quantum chemical methods. Despite the different functional groups of the pyrimidine bases involved, a general valid molecular mechanism was identified, in which the initial step is an electron transfer coupled to a proton transfer from the protonated HIS365 to the N3 nitrogen of the 3 pyrimidine, followed by an intramolecular OH/NH2 transfer in one concerted step, which does not require an oxetane/azetidine or isolated water/ammonia intermediate.  相似文献   

15.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   

16.
A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5′‐phosphate (PLP)‐dependent D ‐ornithine 4,5‐aminomutase (OAM)‐catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff‐base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial “strain” energy on the orientation of the cyclic intermediate to control its trajectory. In addition the “strain” energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP‐dependent reactions.  相似文献   

17.
We propose a non‐radical mechanism for the conversion of methane into methanol by soluble methane monooxygenase (sMMO), the active site of which involves a diiron active center. We assume the active site of the MMOHQ intermediate, exhibiting direct reactivity with the methane substrate, to be a bis(μ‐oxo)diiron(IV ) complex in which one of the iron atoms is coordinatively unsaturated (five‐coordinate). Is it reasonable for such a diiron complex to be formed in the catalytic reaction of sMMO? The answer to this important question is positive from the viewpoint of energetics in density functional theory (DFT) calculations. Our model thus has a vacant coordination site for substrate methane. If MMOHQ involves a coordinatively unsaturated iron atom at the active center, methane is effectively converted into methanol in the broken‐symmetry singlet state by a non‐radical mechanism; in the first step a methane C? H bond is dissociated via a four‐centered transition state (TS1) resulting in an important intermediate involving a hydroxo ligand and a methyl ligand, and in the second step the binding of the methyl ligand and the hydroxo ligand through a three‐centered transition state (TS2) results in the formation of a methanol complex. This mechanism is essentially identical to that of the methane–methanol conversion by the bare FeO+ complex and relevant transition metal–oxo complexes in the gas phase. Neither radical species nor ionic species are involved in this mechanism. We look in detail at kinetic isotope effects (KIEs) for H atom abstraction from methane on the basis of transition state theory with Wigner tunneling corrections.  相似文献   

18.
TET family enzymes are known for oxidation of the 5‐methyl substituent on 5‐methylcytosine (5mC) in DNA. 5mC oxidation generates the stable base 5‐hydroxymethylcytosine (5hmC), starting an indirect, multi‐step process that ends with reversion of 5mC to unmodified cytosine. While probing the nucleobase determinants of 5mC recognition, we discovered that TET enzymes are also proficient as direct N‐demethylases of cytosine bases. We find that N‐demethylase activity can be readily observed on substrates lacking a 5‐methyl group and, remarkably, TET enzymes can be similarly proficient in either oxidation of 5mC or demethylation of N4‐methyl substituents. Our results indicate that TET enzymes can act as both direct and indirect demethylases, highlight the active‐site plasticity of these FeII/α‐ketoglutarate‐dependent dioxygenases, and suggest activity on unexplored substrates that could reveal new TET biology.  相似文献   

19.
Uracil DNA glycosylase (UNG) is an important DNA repair enzyme that recognizes and excises uracil bases in DNA using an extrahelical recognition mechanism. It is emerging as a desirable target for small-molecule inhibitors given its key role in a wide range of biological processes including the generation of antibody diversity, DNA replication in a number of viruses, and the formation of DNA strand breaks during anticancer drug therapy. To accelerate the discovery of inhibitors of UNG we have developed a uracil-directed ligand tethering strategy. In this efficient approach, a uracil aldehyde ligand is tethered via alkyloxyamine linker chemistry to a diverse array of aldehyde binding elements. Thus, the mechanism of extrahelical recognition of the uracil ligand is exploited to target the UNG active site, and alkyloxyamine linker tethering is used to randomly explore peripheral binding pockets. Since no compound purification is required, this approach rapidly identified the first small-molecule inhibitors of human UNG with micromolar to submicromolar binding affinities. In a surprising result, these uracil-based ligands are found not only to bind to the active site but also to bind to a second uncompetitive site. The weaker uncompetitive site suggests the existence of a transient binding site for uracil during the multistep extrahelical recognition mechanism. This very general inhibitor design strategy can be easily adapted to target other enzymes that recognize nucleobases, including other DNA repair enzymes that recognize other types of extrahelical DNA bases.  相似文献   

20.
An efficient method has been developed for the synthesis of N‐alkylated 2′‐oxo‐3‐phenylspiro[cyclopropane‐1,3′‐indoline]‐2,2‐dicarbonitrile from 3‐chloroindolin‐2‐one and 2‐benzylidenemalononitrile by using triethylamine as a base at room temperature and obtained the products in moderate to good yields. In extension, the scope of the reaction has been investigated by stepwise and one‐pot methods. Furthermore, in silico antibacterial activity was carried out in order to understand possible binding modes of novel derivatives with the active site of DNA gyrase A enzyme, and the results were well complemented. Additionally, absorption, distribution, metabolism, and excretion properties of compounds have shown drug likeness with good oral absorption and moderate blood–brain barrier permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号