首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
用键能E~A~B和Mulliken布居对化学键强度的判别进行了分析比较。结果表明,键能判据比Mulliken布居判据所得结论更符合实际情况。作为衡量原子间化学键强度的尺度,不仅应考虑原子轨道间的布居因素,还应考虑分子轨道(或原子轨道)的能量因素。  相似文献   

2.
用键能E~A~B和Mulliken布居对化学键强度的判别进行了分析比较。结果表明,键能判据比Mulliken布居判据所得结论更符合实际情况。作为衡量原子间化学键强度的尺度,不仅应考虑原子轨道间的布居因素,还应考虑分子轨道(或原子轨道)的能量因素。  相似文献   

3.
用键能EAB和Mulliken布居对化学键强度的判别进行了分析比较.结果表明,键能判据比Mulliken布居判据所得结论更符合实际情况.作为衡量原子间化学键强度的尺度,不仅应考虑原子轨道间的布居因素,还应考虑分子轨道(或原子轨道)的能量因素.  相似文献   

4.
曹根庭  胥倩  倪哲明 《化学学报》2011,69(24):2947-2954
建立了Mg3Al-LDH-Cl-nH2O (n=0~2)双层周期性计算模型. 选用密度泛函理论-赝势平面波法CASTEP, 从原子轨道布居、Mulliken电荷布居、态密度(DOS)等方面, 计算研究了含层间水情况下体系的电子结构及成键特征, 并探求了层间水分子含量及水分子的电子屏蔽效应对Mg3Al-LDH-Cl-nH2O材料电子结构的影响. 结果表明体系层板上 M—O同时具有共价键与离子键两种特征, 主客体之间以静电作用为主, 而层间客体之间的相互作用以氢键作用为主. 层间H2O的电子屏蔽作用主要表现为对层间阴离子的影响以及对层板上二价金属阳离子的影响. 主体层板的电价成分和层间域的共价成分均随着水分子数目的增加而增加.  相似文献   

5.
金属石墨层间化合物的量子化学和热力学研究   总被引:1,自引:0,他引:1  
采用量子化学密度泛函B3LYP方法,对碱金属、碱土金属和过渡金属石墨层间化合物(A-GIC,AE-GIC和T-GIC)进行计算.从原子净电荷、Mulliken重叠布居和轨道电子数等角度讨论了A-GIC和AE-GIC的电子结构与成键特性,初步阐明了结构与性能的关系.根据计算结果,结合热力学分析,讨论实验上尚未知的过渡金属石墨层间化合物合成的可能性.  相似文献   

6.
在我们的许多教科书中,当讲到原子轨道杂化的原因时,都是这样叙述的:杂化轨道具有更强的方向性,伸展得更远,可以与其他原子的原子轨道进行更大程度的重迭,从而提高成键能力,形成更牢固的化学键,使分子更加稳定。于是给学生形成了这样一个“基本概念”,“杂化轨道的成键能力越大,形成的共价键键能  相似文献   

7.
姚崇福 《大学化学》1995,10(4):50-55
考虑到重叠轨道间交角的影响,可将Heilbronner定性HMO理论成功地推广到AB_n体系。得出了分子轨道中轨道间重叠和节面的分布情况。结果表明原子轨道间的成键作用,以成键和反键二极分化最大为原则。有8n个价电子的AB_n呈高对称性构型;8n+2个价电子的AB_n则呈低对称性构型。  相似文献   

8.
计算了三螺旋硒链的一维能带, 三方硒的三维能带和Se_6簇的能级。能带分为三组: Se-Se成键带, 孤对电子带和Se-Se反键带。符合Se-Se, 成键的价电子层结构。同时对电子态进行了空间群的对称性分类。为了更广泛的将固体的计算结果与原子簇做比较, 定义了簇轨道重叠布居, 它是原子簇计算态密度的轨道重叠布居权重值。计算表明, Se_6簇(D_(3d))的态密度和簇轨道重叠布居分别与三方硒的态密度和晶体轨道重叠布居颇为类似, 说明两者成键本质的类似性。带隙和态密度与相应的实验数据作了比较。  相似文献   

9.
本文使用相对论赝势从头计算方法和成键能判据[1 ] 研究了模型化合物 Pd CO(OH) -的电子结构 ,讨论了 OH-的助催化作用。得出 OH-对 Pd CO的助催化作用既可以通过其与金属 Pd形成化学键 (通过金属 )来实现 ,也可以通过空间电荷静电作用 (通过空间 )来实现。由分子轨道成键能分析指出 CO分子的强成键占据分子轨道 3σ和 1π的削弱是活化 CO的关键。  相似文献   

10.
本文采用成键能判据探讨了模型化合物PdCOM^+分子轨道成键性质和原子间化学键强度,进而说明M^+的助催化性能,得到与文献[2]和实验[3]相符的结论。  相似文献   

11.
In this paper, the bond strengths, defined by Pauling, for a series of molecules in the type of MLk have been calculated by using the generalized method obtained from the maximum overlap method in a preceding paper and by using Pauling's pair–defect–sum approximation. A number of geometrical bonding situations are investigated. It is demonstrated why a previous study purporting to use of Pauling's criterion of bond strength to find that the axial bonds in trigonal bipyramidal ML5 are stronger than the equatorial bonds is incorrect. The results obtained from the two methods approach each other and are in good agreement with the experimental bond lengths, which show that Pauling's criterion is viable and that the pair–defect–sum approximation is indeed an excellent one that agrees with the maximum overlap method.  相似文献   

12.
To preserve the continuity of a recent bond order concept [1], the Mulliken overlap criterion for bonding and antibonding is replaced by a vector projection weighting procedure. The consequences of this change are discussed in applications to selected diatomics and polyatomics.Dedicated to Professor H. Hartmann on his 65th birthday.  相似文献   

13.
The study is aimed at revealing the possible manifestation of the overlap topology of AOs at early stages of pericyclic reactions. To this end, formation of an evenmembered cycle of carbon atoms is considered as a unified model, wherein relatively strong (C?C) bonds alternate with weak ones. A direct perturbative method is applied to derive algebraic expressions for energy and bond order corrections due to cyclization. To represent the overlap topology of 2pz AOs over the cycle, a new concept of the roundabout interaction is introduced. The relevant definition contains a product of resonance parameters (or overlap integrals) between orbitals of all neighboring pairs of C?C bonds and a certain N‐dependent parity factor, where N coincides with the total number of these bonds. The principal result of the study consists in demonstration of proportionality of both energy and bond order corrections to the roundabout interaction of the given cycle and thereby of a direct dependence between these corrections and the overlap topology of AOs. Moreover, the sign of the roundabout interaction is shown to determine the allowance of the given way of the process, viz. cycles described by positive (negative) roundabout interactions refer to allowed (forbidden) ways. Thus, an analog of the famous Woodward‐Hoffmann rule is obtained, wherein the overlap topology of AOs stands instead of symmetry of molecular orbitals. Along with stabilization of the cycle vs. the initial open chain, the allowed processes also are necessarily characterized by growing uniformity of all bond orders over the cycle, while the forbidden ones are accompanied by both destabilization and an increasing distinction between strong and weak bonds. The results obtained also yield a new definition of the concerted nature of pericyclic processes. The general conclusions of the study are illustrated by consideration of specific examples including the electrocyclic closure of polyene chains. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
This paper deals with a central paradigm of chemistry, the electron-pair bond. Valence bond (VB) theory and electron-localization function (ELF) calculations of 21 single bonds demonstrate that along the two classical bond families of covalent and ionic bonds, there exists a class of charge-shift bonds (CS bonds) in which the fluctuation of the electron pair density plays a dominant role. In VB theory, CS bonding manifests by way of a large covalent-ionic resonance energy, RE(CS), and in ELF by a depleted basin population with large variances (fluctuations). CS bonding is shown to be a fundamental mechanism that is necessary to satisfy the equilibrium condition, namely the virial ratio of the kinetic and potential energy contributions to the bond energy. The paper defines the atomic propensity and territory for CS bonding: Atoms (fragments) that are prone to CS bonding are compact electronegative and/or lone-pair-rich species. As such, the territory of CS bonding transcends considerations of static charge distribution, and involves: a) homopolar bonds of heteroatoms with zero static ionicity, b) heteropolar sigma and pi bonds of the electronegative and/or electron-pair-rich elements among themselves and to other atoms (e.g., the higher metalloids, Si, Ge, Sn, etc), c) all hypercoordinate molecules. Several experimental manifestations of charge-shift bonding are discussed, such as depleted bonding density, the rarity of ionic chemistry of silicon in condensed phases, and the high barriers of halogen-transfer reactions as compared to hydrogen-transfers.  相似文献   

15.
Fully relativistic (four-component) density-functional theory calculations were performed for intermetallic dimers MM', where M=Ge, Sn, Pb, and element 114, and MM'=group 10 elements (Ni, Pd, and Pt) and group 11 elements (Cu, Ag, and Au). PbM and 114M, where M are group 14 elements, were also considered. The results have shown that trends in spectroscopic properties-atomization energies D(e), vibrational frequencies omega(e), and bond lengths R(e), as a function of MM', are similar for compounds of Ge, Sn, Pb, and element 114, except for D(e) of PbNi and 114Ni. They were shown to be determined by trends in the energies and space distribution of the valence ns(MM')atomic orbitals (AOs). According to the results, element 114 should form the weakest bonding with Ni and Ag, while the strongest with Pt due to the largest involvement of the 5d(Pt) AOs. In turn, trends in the spectroscopic properties of MM' as a function of M were shown to be determined by the behavior of the np(1/2)(M) AOs. Overall, D(e) of the element 114 dimers are about 1 eV smaller and R(e) are about 0.2 a.u. larger than those of the corresponding Pb compounds. Such a decrease in bonding of the element 114 dimers is caused by the large SO splitting of the 7p orbitals and a decreasing contribution of the relativistically stabilized 7p(1/2)(114) AO. On the basis of the calculated D(e) for the dimers, adsorption enthalpies of element 114 on the corresponding metal surfaces were estimated: They were shown to be about 100-150 kJ/mol smaller than those of Pb.  相似文献   

16.
Summary The results ofab initio valence bond calculations are reported for H2, with up to 16 nuclear centred and eight midbond 1s and 2p AOs included in them. The 24 AO calculation, with 116S=0 spin structures, gives an STO-6G energy of –1.17237 a.u., which is close to an MP4 estimate of –1.17256 a.u.  相似文献   

17.
DFT calculations on a range of molecules containing intramolecular hydrogen bonds are reported, with a view to establishing how intramolecular hydrogen bonding affects their intermolecular interactions. It is shown that properties such as the energy of the intramolecular H-bond are unrelated to the ability to form external H-bonds. Conversely, several properties of complexes with a reference base correlate well with an experimental scale of H-bond acidity, and accurate predictive models are determined. A more detailed study, using electrostatic and overlap properties of complexes with a reference base, is used to predict the location, as well as strength, of hydrogen bond acidity. The effects of intramolecular hydrogen bonding on acidity can be seen not just on O-H and N-H, where acidity is greatly reduced, but also on certain C-H groups, which in some cases become the primary source of acidity.  相似文献   

18.
Carbon-carbon bond deformation curves for fluorinated ethylene molecules and the corresponding carbocations were calculated by the ab initio self-consistent field method in the 5-31G basis set. The maximum force required for bond cleavage was taken as a criterion for bond strength. It has been found that for ethylene, replacement of hydrogen by fluorine insignificantly strengthens the C=C bonds in symmetric molecules. However, in molecules with an asymmetric arrangement of fluorine atoms, the bond is slightly weakened due to different charges on the carbon atoms. The configuration of the corresponding carbocations also depends on the bond polarity: an assymmetric distribution of electron density in the C=C bond region leads to the formation of σ-complexes, while a symmetric distribution of electron density (pure covalent bonding) gives π-complexes. Since the carbon-carbon bond in the σ-complexes is essentially weaker, one should expect significant weakening of the bond in high-acidity media if the bond exhibits any kind of asymmetry (chain branching, defects, etc.). For the considered molecules, an antibatic correlation has been established between the strength criterion Fmax (unlike the dissociation energy) and the bond length. Institute of Physical Chemistry, Russian Academy of Sciences, Moscow. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 1, pp. 34–41, January–February, 1995. Translated by I. Izvekova  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号