首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The methodology of characterizing electronic structure in dielectric materials will be presented in detail. Energy distribution of the electrons emitted from dielectric materials by the Auger neutralization of ions is measured and rescaled for Auger self-convolution, which is restructured from the energy distribution of the emitted electrons. The Fourier transform is very effective for obtaining the density of states from the Auger self-convolution. The MgO layer is tested as an example of this new measurement scheme. The density of states in the valence band of the MgO layer is studied by measuring the energy distribution of the emitted electrons for MgO crystal with three different orientations of (111), (100) and (110). The characteristic energy of ?0 corresponding to the peak density of the states in the band is determined, showing that the (111) orientation has a shallow characteristic energy ?0 = 7.4 eV, whereas the (110) orientation has a deep characteristic energy ?0 = 9.6 eV, consistent with the observed coefficient γ of the secondary electron emission for MgO crystal. Electronic structure in new functional nano-films spayed over MgO layer is also characterized. It is therefore demonstrated that secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials. This method simultaneously determines the valence band structure and the coefficient γ of the secondary electron emission, which plays the most important role in the electrical breakdown phenomena.  相似文献   

2.
We present a detailed study of the electron emission from a thin MgO(100) film on a Mo substrate, bombarded with slow He+, Ne+, and Ar+ ions. Neither the high absolute number of emitted electrons per incoming ion nor the electron spectra can be due to Auger neutralization of the incoming ions at the MgO surface alone. Therefore, an additional mechanism is proposed: holes created in the MgO film are transported to the MgO-substrate interface where they give rise to an Auger neutralization process involving two electrons from the metal substrate conduction band.  相似文献   

3.
H.H. Madden 《Surface science》1981,105(1):129-144
Changes in the valence band density of states (DOS) of a (100) silicon surface that accompany he chemisorption of atomic hydrogen onto that surface are deduced from a study of the changes in the L2,3VV Auger lineshape. Complementary changes in the conduction band DOS are inferred from changes in L2,3VV-core-level characteristic loss spectra (CLS). The chemisorbed hydrogen layer is identified as the dihydride phase from low energy electron diffraction measurements. Upon hydrogen adsorption the DOS at the top of the valence band decreases and new energy levels associated with the Si-H bonds appear lower in the band. Assuming that the Auger signal from the hydrogen covered sample consists of a superposition of a signal from silicon atoms bonded to hydrogen in the dihydride layer and an elemental-Si signal from the substrate, a N(E) difference spectrum with features due only to the dihydride is obtained by subtracting the background corrected, loss deconvoluted L2,3VV signal for a clean (100)Si surface rom the corresponding signal for the hydrogen covered surface. Comparisons of the energy position of the major peak in this difference spectrum with that of the main peak in a gas phase silane Si-L2,3VV spectrum, and of the corresponding Auger energy calculated empirically, indicate a hole—hole interaction energy of ~8 eV for the two-hole final state in the gaseous system and zero for the dihydride surface system. Hydrogen induced changes in the conduction band DOS are less apparent than those of the valence band DOS with only the possibility of a decrease in the DOS at the bottom of the conduction band being inferred from the CLS measurements. Electron stimulated desorption of hydrogen from the dihydride layer is adduced from changes in the Auger lineshape under electron beam irradiation of the surface. Hydrogen induced changes in the near-elastic electron energy loss spectra (ELS) are also reported and compared with previously published ELS results.  相似文献   

4.
We report on the first spin-resolved energy spectra for the emission of electrons during grazing scattering of 150 keV multicharged nitrogen ions from a magnetized Fe(001) surface. A substantial spin polarization for KLL Auger electrons emitted in the final stage of the neutralization sequence during the interaction of multicharged ions with a metal surface is observed. We conclude from our data that the projectile L shell is dominantly populated by electrons from the conduction band of the target. For low energy electrons we find an increase of their spin polarization with an increase of the projectile charge.  相似文献   

5.
当红外强激光和极紫外(XUV)阿秒脉冲共同作用于原子分子时,电离出去的电子通常会吸收和辐射激光光子而发生能量扩展.讨论了由于XUV阿秒脉冲的短波长与扩展后的电子波包尺度可相比拟时在高次谐波产生过程中引起的非偶极效应.采用H+2作为模型分子,并把分子轴置于激光场的传播方向,通过解二维含时薛定谔方程并比较考虑非偶极效应和采用偶极近似两种方法计算得到的结果,两者相比,前者的谐波强度降低,谐波频率向低级次稍有移动,电子能谱的能带内出现了更多的光电子峰.在相同的光电子能量处,两种方法计算得到的信号强度相差2—5倍.并且这种非偶极效应随着红外基频光光强的增大而增强,随阿秒脉冲波长的增大而减弱. 关键词: 非偶极效应 光场空间不均匀性 阿秒脉冲 高次谐波产生  相似文献   

6.
7.
李东海  陈发良 《物理学报》2011,60(6):67804-067804
基于Fokker-Planck方程和激光传输方程建立超短脉冲激光在电介质材料中的传输及材料破坏理论模型,计算材料内不同位置处导带电子数密度及激光电场强度随时间的变化,进而得到激光的反射率、透射率及沉积率随激光能量密度的变化特征.选取导带电子数密度阈值作为材料破坏的判断条件,计算了不同激光能量密度下的破坏深度,发现破坏深度随激光能量密度的变化曲线呈现先增长后减小,讨论了激光能量沉积特性对破坏深度的影响.计算最大破坏深度随激光脉宽的变化发现,激光脉宽越短则最大破坏深度越小. 关键词: 超短脉冲激光 电介质材料 破坏深度 微观理论模型  相似文献   

8.
Two satellite peaks have been observed on the high energy side of the Be KVV Auger peak. The lower energy satellite is attributed to coupling of energy from bulk plasmon de-excitations with Auger electrons, and the higher energy event to Auger electrons ejected from Be atoms with doubly ionized K levels. Following oxidation, the ionization loss spectra of BeO were observed to have structure which is interpreted as being related to the density of unfilled electron states above the BeO valence band. In addition, the characteristic loss and the low energy (“true secondary”) spectra of Be and BeO were determined. Peaks in these spectra are discussed in terms of characteristic energies related to excited electron states in the solids.  相似文献   

9.
Electron emission from the negative electron affinity (NEA) surface of hydrogen terminated, boron doped diamond in the [100] orientation is investigated using angle resolved photoemission spectroscopy (ARPES). ARPES measurements using 16 eV synchrotron and 6 eV laser light are compared and found to show a catastrophic failure of the sudden approximation. While the high energy photoemission is found to yield little information regarding the NEA, low energy laser ARPES reveals for the first time that the NEA results from a novel Franck-Condon mechanism coupling electrons in the conduction band to the vacuum. The result opens the door to the development of a new class of NEA electron emitter based on this effect.  相似文献   

10.
It is shown that, in Auger-electron spectra of three-dimensional semimetal graphite and two-dimensional graphite (a zero band-gap semiconductor), an energy gap should be observed between the thresholds (edges) of the forward and inverse processes (threshold gap). In the one-electron approximation, this gap is zero, since the threshold for the Auger spectrum of the forward process is the minimum hole energy in the valence band, while the threshold for the spectrum of the inverse process is the minimum energy of conduction electrons. Inclusion of the electron correlation at the Fermi surface within the quantum-chemical approximation of a single open electron shell for multiplet structures of the restricted Hartree-Fock method makes it possible to determine the threshold gap as 1.5 eV for a 48-atom cyclic model of three-dimensional graphite and as 2.0 eV for a 24-atom model of two-dimensional graphite. The threshold gap does not contain the Fermi energy, in contrast to the Auger spectrum thresholds, where \(\frac{1}{2}(4.0 eV - \varepsilon _F )\) for the forward Auger spectrum (holes) and \(\frac{1}{2}( - 1.1 eV + \varepsilon _F )\) for the inverse spectrum (conduction electrons), the sum of which gives this gap. The results of calculations for the forward Auger spectra of three-dimensional graphite (including the conclusion that electron correlation of holes in the top valence bands is weak in the Auger process) are shown to agree with the experimental data.  相似文献   

11.
石英玻璃中导带电子的光吸收   总被引:1,自引:0,他引:1       下载免费PDF全文
分别用二阶和三阶微扰理论计算了 193nm 、355nm 激光照射下石英玻璃中导带电子的单光子吸收速率和双光子吸收速率。结果表明,电子空穴散射参与的单光子吸收和声学声子参与的双光子吸收都是材料中导带电子吸收激光能量的重要过程。  相似文献   

12.
Navinder Singh 《Pramana》2005,64(1):111-118
A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the pulsed photoexcitation creates two distinct but spatially interpenetrating electron and hole non-equilibrium subsystems that initially relax non-radiatively through the electron (hole)-phonon processes towards the conduction (valence) band minimum (maximum), and finally radiatively through the phonon-assisted electron-hole recombination across the band-gap, which is a relatively slow process. This leads to an accumulation of electrons (holes) at the conduction (valence) band minimum (maximum). The resulting peaking of the carrier density and the entire evolution of the hot electron (hole) distribution has been calculated. The latter may be time resolved by a pump-probe study. The model is particularly applicable to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier concentration and strong electron-phonon coupling, where the usual two-temperature model [1-4] may not be appropriate.  相似文献   

13.
We develop a theory describing the heating of electrons in crystalline insulators irradiated by high-intensity laser pulses. In agreement with photoelectron yield versus intensity measurements, we assume that electrons are excited into the conduction band from defect layers and traps. The electron dynamics due to direct inter-branch transitions within the conduction band is simulated by solving of time-dependant Schr?dinger equation. The set of levels for this equation is supposed to be random with a distribution function equal to the density of states in the conduction band. The influence of different parameters on the electron heating efficiency is studied. The theory is applied for diamond; the theoretical spectrum is in qualitative agreement with the experimental observations.  相似文献   

14.
Calculations of the kinetic energy distributions of electrons ejected from plane metal surfaces by Auger neutralization of slow monoatomic ions are reported. A many body theory is used that includes both the band structure of the target material and the Fermi singular response of metal electrons (to the sudden neutralization of the projectile). Application is made to experiments of electron emission from polycrystalline Al by Ar+-ions, at varying incident energies and angles. Adjustment of the broadening parameters of the distribution of shake-up electrons leads to excellent agreement between the theory and the measurements.  相似文献   

15.
Ultrathin MgO films were grown on a W(1 1 0) substrate while metastable impact electron (MIES) and photoelectron (UPS) spectra were measured in situ; apart from the valence band emission, no additional spectral features were detected. The oxide surface was exposed to metal atoms (Cu, Pd) at RT. A comparison with the DOS extracted from first-principles DFT calculations shows that the metal-induced intensity developing above the top of the O 2p valence band in the UP spectra under Cu(Pd) exposure is caused by Cu 3d (Pd 4d) emission. The emission seen in the MIES spectra is attributed to the ionization of Cu 3d and 4s states of adsorbed neutral Cu atoms in an Auger process, Auger neutralization, involving two electrons from the surface, at least one of them from the metal adsorbate. The shape of the MIES spectra suggests metallic island growth even at the lowest studied exposures, which is supported by the first-principles calculations.  相似文献   

16.
吴克跃  黄伟其  许丽 《发光学报》2007,28(4):585-588
用激光照射辅助电化学刻蚀硅锗合金样品能够形成多种低维纳米结构。在硅锗合金上形成的多孔状结构在波长为725 nm处有很强的光致发光(PL)峰,PL的增强效应不能单独用量子受限模型来解释。我们提出新的模型来解释这种低维纳米结构的PL增强效应。  相似文献   

17.
Time-resolved emission and excitation spectra and luminescence decay kinetics were studied at 150-300 K for the green emission of PbWO4:Mo crystals. It was found that the slow (μs-ms) decay component observed under excitation in the defect-related absorption region (around 3.8-3.9 eV) arises from the G(II) emission which appears at the tunneling recombination of optically created electron and hole centers. The study of the emission decay kinetics at different temperatures and excitation intensities allowed concluding that both the monomolecular and the bimolecular tunneling recombination process can be stimulated in the mentioned energy range. The monomolecular process takes place in the isolated spatially correlated pairs of electron and hole centers produced without release of electrons into the conduction band. The bimolecular process takes place in the pairs of randomly distributed centers created at the trapping of free electrons from the conduction band. The formation of electron centers under irradiation in the defect-related absorption region was investigated by the electron spin resonance (ESR) and thermally stimulated luminescence (TSL) methods. The possibility of various photo-thermally stimulated defects creation processes, which take place with and without release of free electrons into the conduction band, was confirmed.  相似文献   

18.
The total energy distribution of electrons emitted from clean Cu(100) and oxygen covered surfaces is analysed. A primary electron energy of 400 eV enabled the investigation of characteristic losses (ELS), Cu MVV Auger transitions and true secondary electrons in a single spectroscopic run. Oxygen exposure up to 108 L at elevated temperature (~400 K) results in a Cu density of states (DOS) strongly affected by O(2p) electrons. The Auger lines of Cu, atomic-like for clean surfaces, reveal DOS effects after some 107 L oxygen exposure: all MVV transitions shift down by ~2 eV in spite of a fixed M23 level; the M23VV Auger line splitting is vanishing due to a broadened valence band maximum allowing the deexcitation of the final two-hole state of intraatomic transitions. Heating the oxygen covered crystal to 820 K is accompanied by the removal of much surface oxygen and an electronic state resembling an earlier oxidation state without DOS effects in the Cu Auger spectrum.  相似文献   

19.
报道了对扫描探针电子能谱仪(SPEES)中俄歇电子出射的理论模拟研究。 通过对俄歇电子在针尖电场作用下运动轨迹的模拟以及综合考虑从针尖场发射电子到俄歇电子出射全过程中各种因素的影响, 系统研究了针尖形状、 针尖偏压和针尖 样品距离对俄歇电子出射效率的影响, 以及出射俄歇电子束流密度在针尖电场区边缘处的分布。 研究结果为提高SPEES的收集效率、 空间分辨以及能量分辨提供了重要的参考数据。 The simulation of the Auger electron emissions in scanning probe electron energy spectrometer (SPEES) is reported. By simulating the trajectory of Auger electrons, we systematically investigate the dependence of the emission efficiency of Auger electrons on the shape of tip, the biasing voltage, and the distance between the tip and sample surface, as well as the intensity distributions of Auger electrons at the edge of tip sample region. The results will be the significant reference for improving the sensitivity, spatial and energy resolutions of SPEEs.  相似文献   

20.
We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (approximately 20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号