首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper proposes a new graphene resonator circuit which operates on the principle of a self-oscillator and has no drawbacks typical of nanoresonators as mass detectors and associated with their law quality factor, eigenfrequency errors (measurements from resonance curves), and dependence of quench frequency on oscillation frequency (curves with quenching for nonlinear systems). The proposed circuit represents a self-oscillator comprising an amplifier, a graphene resonator, and a positive feedback loop with a graphene oscillation transducer, and its major advantage is in self-tuning to resonance frequency at slowly varying resonator parameters, compared to oscillation periods. The graphene layer with a conducting substrate beneath it forms a capacitor which is recharged by a dc voltage source as its capacitance varies due to graphene deformation, and the recharge current is an oscillation- dependent signal transmitted from the transducer to the amplifier input. The graphene layer is placed in a magnetic field and is deformed when a current from the amplifier output is passed through. By properly choosing the magnetic field direction and the amplifier gain, it is possible to provide swinging oscillation whose amplitude is limited by the amplifier nonlinearity. For the proposed system we present an electromechanical model, dimensionless equations of motion, and numerical data demonstrating the generation of steady-state oscillations with eigenfrequency. Also presented is an analysis showing that the system can have only one limit cycle and that this cycle is always stable. The proposed resonator circuit can be used as a mass detector which determines the added mass from a change in self-oscillation frequency.  相似文献   

2.
We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape with measurement power is observed and theoretically explained. For weak measurement a long intrinsic dephasing time of T2>200 ns of the qubit is found.  相似文献   

3.
We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence.  相似文献   

4.
When the nonlinearity of nanomechanical resonator is not negligible, the quantum decoherence of charge qubit is studied analytically. Using nonlinear Jaynes-Cummings model, one explores the possibility of being quantum data bus for nonlinear nanomechanical resonator, the nonlinearity destroys the dynamical quantum information-storage and maintains the revival of quantum coherence of charge qubit. With the calculation of decoherence factor, we demonstrate the influence of the nonlinearity of nanomechanical resonator on engineered decoherence of charge qubit.  相似文献   

5.
We propose a scheme for generating squeezed states based on a superconducting hybrid system.Our system consists of a nanomechanical resonator,a superconducting flux qubit,and a superconducting transmission line resonator.Using our proposal,one can easily generate the squeezed states of the nanomechanical resonator.In our scheme,the nonlinear interaction between the nanomechanical resonator and the superconducting transmission line resonator can be implemented by the flux qubit as 'nonlinear media' with a tunable Josephson energy.The realization of the nonlinearity does not need any operations on the flux qubit and just needs to adiabatically keep it at the ground state,which can greatly decrease the effect of the decoherence of the flux qubit on the squeezed efficiency.  相似文献   

6.
We demonstrate the realization of a hybrid solid-state quantum device, in which a semiconductor double quantum dot is dipole coupled to the microwave field of a superconducting coplanar waveguide resonator. The double dot charge stability diagram extracted from measurements of the amplitude and phase of a microwave tone transmitted through the resonator is in good agreement with that obtained from transport measurements. Both the observed frequency shift and linewidth broadening of the resonator are explained considering the double dot as a charge qubit coupled with a strength of several tens of MHz to the resonator.  相似文献   

7.
The properties of a superconducting flux quantum bit (qubit) in the quasidispersive mode, where the frequency of a probe signal is lower than the qubit excitation frequency but is close to it, have been experimentally studied. It has been shown that all parameters of the qubit inductively coupled to a coplanar resonator can be determined at the single-frequency excitation from the analysis of the frequency responses of the transmission of the probe signal at the output of this resonator. Under the additional excitation of the qubit by the signal at the second harmonic of the cavity, resonance dips have been observed because of resonance between the probe signal and induced Rabi splitting. It has been shown that the positions of these dips are in good agreement with the parameters of the qubit that are obtained by analyzing the amplitude–frequency response within the width of the fundamental resonance frequency.  相似文献   

8.
We condider the process of parametric resonance of magnons in magneto-ordered crystals in a microwave resonator. The nonlinear interaction of the resonator photons with the parametric magnon pairs is analysed theoretically, and the result expressed by the deviation frequencies relative to the pump frequency further demonstrates that the dynamics of resonator modes plays an important role once the pump power exceeds the threshold of parallel pumping.  相似文献   

9.
The nonlinear dynamics in a paramagnetic maser amplifier is investigated experimentally and theoretically under conditions such that the active medium exerts a sufficiently strong feedback influence on the pump field to induce population inversion of the spin levels. Branching of the inversion ratio due to the onset of bistability in the nonlinear microwave cavity of the pump at a frequency of 150 GHz is observed experimentally. Conditions are determined for the possible excitation of new nonlinear resonances when the spin system is inverted by a standing-wave field, and the stability of the resulting stationary nonequilibrium states of the paramagnet is analyzed. Zh. Tekh. Fiz. 69, 101–105 (May 1999)  相似文献   

10.
We investigate the nonlinear light propagation in InAs/InGaAs quantum-dot-in-a-well semiconductor optical amplifiers in the limit of strong optical excitation where Rabi oscillations are excited in the active medium. The amplifier is analyzed in a degenerate four-wave-mixing setup and characterized by its frequency conversion and creation performance. Our simulations show that the interplay between the nonlinear four-wave-mixing process and the coherent Rabi oscillations greatly influences the frequency conversion process. Rabi oscillations can be resonantly excited by the correct choice of the frequency detuning between pump and probe signals, which greatly enhances the nonlinear frequency conversion efficiency at frequencies up to several THz. We furthermore show that the coherent pulse shaping of ultrashort optical pulses in the quantum-dot medium can greatly enhance their spectral bandwidth, potentially allowing for ultra-broad-band frequency comb generation.  相似文献   

11.
We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fröhlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.  相似文献   

12.
行波管放大器中辐射场的极限环振荡和混沌   总被引:1,自引:1,他引:0       下载免费PDF全文
郝建红  丁武 《物理学报》2003,52(4):906-910
以行波管放大器中辐射场的非线性不稳定阈值分析为基础,对辐射场从频率分叉到混沌的演化过程和不同区域这些非线性不稳定态的时间特性和频率特性进行了研究.在“软”非线性区域,辐射场表现为极限环振荡和频率分岔,频谱是离散的且相对于载波频率是不对称的.这种不稳定是阵发性的,适当的调节控制参量,可使器件工作在所需的定态或极限环振荡态上;在“硬”非线性区域,辐射场表现为非周期的随机振荡和频率混沌,频谱连续且频带很宽,场幅值较大的成分集中在接近于零频的低频范围里.这种不稳定是连续性的,不能通过调节参量来消除. 关键词: 行波管 辐射场 分岔 极限环 混沌  相似文献   

13.
We demonstrate high-contrast state detection of a superconducting flux qubit. Detection is realized by probing the microwave transmission of a nonlinear resonator, based on a SQUID. Depending on the driving strength of the resonator, the detector can be operated in the monostable or the bistable mode. The bistable operation combines high-sensitivity with intrinsic latching. The measured contrast of Rabi oscillations is as high as 87%; of the missing 13%, only 3% of the loss of contrast is unaccounted for. Experiments involving two consecutive detection pulses are consistent with preparation of the qubit state by the first measurement.  相似文献   

14.
Simons MT  Novikova I 《Optics letters》2011,36(16):3027-3029
In this Letter we report experimental demonstration of nonlinear frequency conversion at several optical frequencies in a whispering-gallery mode resonator (WGMR). Because of the enhancement of nonlinear interactions inside a WGMR, interaction of a 1064 nm pump field with a LiNbO(3) disk produced a weak but measurable non-phase-matched 532 nm second-harmonic field at room temperature (>100 °C below the phase-matching temperature) for pump powers of a few tens of milliwatts. For higher pump powers, we observed the generation of four additional fields at 545, 559, 573, and 587 nm. The relative spectral shift between two consecutive fields corresponds to a 455 cm(-1) vibrational mode in LiNbO(3) crystal. Our preliminary analysis indicates that these fields are the result of a multiphonon hyper-Raman scattering in which two photons of the pump field are converted into one photon of a higher-frequency field and one or several optical phonons.  相似文献   

15.
Arrays of transmon qubits coupled to a λ/2 superconducting coplanar waveguide resonator have been studied by microwave spectroscopy. The emergence of a collective mode has been discovered for a cluster of N > 5 qubits, whose coupling constant to the electromagnetic field in the resonator is √N times greater compared to a single qubit. In addition, the emergence of collective multiphoton transitions exciting higher levels of a qubit cluster has been demonstrated and the interaction of an individual qubit with such a cluster has been investigated.  相似文献   

16.
We investigate quantum-squeezing-enhanced weak-force sensing via a nonlinear optomechanical resonator containing a movable mechanical mirror and an optical parametric amplifier(OPA). Herein, we determined that tuning the OPA parameters can considerably suppress quantum noise and substantially enhance force sensitivity, enabling the device to extensively surpass the standard quantum limit. This indicates that under realistic experimental conditions, we can achieve ultrahigh-precision quantum force sensing by harnessing nonlinear optomechanical devices.  相似文献   

17.
We theoretically investigate the multistable behavior of a hybrid optomechanical system,in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier(OPA).It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA,the phase of the field pumping the OPA,the power and frequency of the field driving the cavity,and the Coulomb coupling strength between the two charged mechanical resonators.In particular,the increase of the nonlinear gain parameter can result in a transition from testability to Instability.Moreover,the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.  相似文献   

18.
We report on a subterahertz superlattice parametric oscillator that operated simultaneously at two different harmonic frequencies of a microwave pump field. A pump field (frequency near 100 GHz) was coupled to a GaAs/AlAs superlattice in a resonator for the third and the fifth harmonic. The pump field produced a third harmonic field and this together with the pump field created a fifth harmonic field. A theoretical analysis indicates that the nonlinearity, which is based on the dynamics of miniband electrons, should allow for the upconversion of pump radiation of higher frequency into the terahertz frequency range.   相似文献   

19.
The acoustic field in a resonator filled with a cubically nonlinear medium is investigated. The field is represented as a linear superposition of two strongly distorted counterpropagating waves. Unlike the case of a quadratically nonlinear medium, the counterpropagating waves in a cubically nonlinear medium are coupled through their mean (over a period) intensities. Free and forced standing waves are considered. Profiles of discontinuous oscillations containing compression and expansion shock fronts are constructed. Resonance curves, which represent the dependences of the mean field intensity on the difference between the boundary oscillation frequency and the frequency of one of the resonator modes, are calculated. The structure of the profiles of strongly distorted “forced” waves is analyzed. It is shown that discontinuities are formed only when the difference between the mean intensity and the detuning takes certain negative values. The discontinuities correspond to the jumps between different solutions to a nonlinear integro-differential equation, which, in the case of small dissipation, degenerates into a third-degree algebraic equation with an undetermined coefficient. The dependence of the intensity of discontinuous standing waves on the frequency of oscillations of the resonator boundary is determined. A nonlinear saturation is revealed: at a very large amplitude of the resonator wall oscillations, the field intensity in the resonator ceases depending on the amplitude and cannot exceed a certain limiting value, which is determined by the nonlinear attenuation at the shock fronts. This intensity maximum is reached when the frequency smoothly increases above the linear resonance. A hysteresis arises, and a bistability takes place, as in the case of a concentrated system at a nonlinear resonance.  相似文献   

20.
Matsushima I  Yashiro H  Tomie T 《Optics letters》2006,31(13):2066-2068
A cryogenically cooled Ti:sapphire regenerative ring amplifier was developed as a laser for generating a laser-produced plasma light source. With a 10 kHz 180 W pump laser, the amplifier output is 40 W before compression and 26 W after compression. We believe it to be the current highest average-power output from a single stage Ti:sapphire amplifier. The effective focal length of the thermal lens is measured to be 2.2 m at 100 K for 180 W of pump power. With a 1 m focal length lens placed in the resonator, the effect of a thermal lens on the resonator mode is suppressed. High conversion efficiency is achieved for the whole pumping power range without any additional measures for thermal compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号