首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
The goal of this study is to construct simple electromechanical models of nanoresonators as mass detectors. A major obstacle in the achievement of sufficient measurement accuracy for the resonant frequency associated with the adsorption of additional mass onto the graphene layer is a low quality factor of the oscillatory system containing the graphene layer. A graphene resonator can be considered as an elastic system with distributed parameters. The application of the Galerkin method to study nearly resonant vibrational modes reduces the problem to considering an oscillatory system with a few degrees of freedom with pronounced nonlinear properties. These properties are, first of all, due to the nonlinear dependence of the forces produced by the electric field on the graphene deflection and, second, due to the nonlinear dependence of the graphene layer tension on its deflection. Taking into account the nonlinear properties leads to the appearance of characteristic drops in the resonance curve which allow for a more accurate resonant frequency measurement. Resonance curves with such characteristic drops can be obtained using a demonstration experimental macromodel of the resonator. Two absolutely new layouts are proposed, such as a differential resonator and resonator with parametric excitation. The oscillations excited in the differential resonator that contains two graphene layers resemble beats. In this case, small changes in the mass of the main layer correspond to significant changes in the frequency of the envelope. This effect is illustrated by oscillograms obtained for an experimental macromodel of the differential resonator. The parametric resonator has one graphene layer between two conducting surfaces. Parametric excitation of steady-state high amplitude oscillations is possible in this resonator only in a narrow frequency band close to the eigenfrequency. The band width reduces with a decrease in the quality factor of the oscillatory system. The latter fact can be useful for the improvement of eigenfrequency measurement accuracy at a low quality factor of the oscillatory system.  相似文献   

2.
We describe a new, in principle, layout of a graphene resonator—a differential resonator, which makes it possible to increase substantially its sensitivity to the mass deposited on it. The differential resonator consists of two parallel graphene films, which are fastened in insulating supports; the lower film is arranged over the conducting surface. The force coupling between the films is performed by the electrostatic field in the space between them. Several equilibrium positions are possible in such a mechanical system. Small free oscillations near the stable equilibrium position are considered. The field strength is selected so that the mechanical system of two graphene films would have two close eigenfrequencies. The free oscillations of such a system have the form of intrinsic frequencies of the system much lower that the partial frequency of each film. When depositing the particle on the upper film, the partial eigenfrequency of this film decreases. In this case, the characteristic envelope frequency also decreases, and a small variation in the partial eigenfrequency leads to considerable variation in the characteristic envelope frequency. This provides higher sensitivity to the mass of the revealed particle for the differential resonator compared with the resonator based on one film.  相似文献   

3.
Shear waves with finite amplitude in a one-dimensional resonator in the form of a layer of a rubber-like medium with a rigid plate of finite mass at the upper surface of the layer are investigated. The lower boundary of the layer oscillates according to a harmonic law with a preset acceleration. The equation of motion for particles in a resonator is determined using a model of a medium with a single relaxation time and cubical dependence of the shear modulus on deformation. The amplitude and form of shear waves in a resonator are calculated numerically by the finite difference method at shifted grids. Resonance curves are obtained at different acceleration amplitudes at the lower boundary of a layer. It is demonstrated that, as the oscillation amplitude in the resonator grows, the value of the resonance frequency increases and the shape of the resonance curve becomes asymmetrical. At sufficiently large amplitudes, a bistability region is observed. Measurements were conducted with a resonator, where a layer with the thickness of 15 mm was manufactured of a rubber-like polymer called plastisol. The shear modulus of the polymer at small deformations and the nonlinearity coefficient were determined according to the experimental dependence of mechanical stress on shear deformation. Oscillation amplitudes in the resonator attained values when the maximum shear deformations in the layer were 0.4–0.6, which provided an opportunity to observe nonlinear effects. Measured dependences of the resonance frequency on the oscillation amplitude corresponded to the calculated ones that were obtained at a smaller value of the nonlinear coefficient.  相似文献   

4.
Forced oscillations excited by a radial magnetic dipole in a dielectric hemisphere (resonator) placed on a perfectly conducting plane are studied. It is shown that the dipole excites H modes. When the dipole radiation frequency equals the eigenfrequency of the resonator, an amplitude resonance is observed in the spectrum. The excitation efficiency is high when the magnetic dipole is placed at the maximum of the radial field component of the resonator’s eigenmode.  相似文献   

5.
Quantum transducers can transfer quantum information between different systems. Microwave–optical photon conversion is important for future quantum networks to interconnect remote superconducting quantum computers with optical fibers. Here, a high-speed quantum transducer based on a single-photon emitter in an atomically thin membrane resonator, that can couple single microwave photons to single optical photons, is proposed. The 2D resonator is a freestanding van der Waals heterostructure (which may consist of hexagonal boron nitride, graphene, or other 2D materials) that hosts a quantum emitter. The mechanical vibration (phonon) of the 2D resonator interacts with optical photons by shifting the optical transition frequency of the single-photon emitter with strain or the Stark effect. The mechanical vibration couples to microwave photons by shifting the resonant frequency of an LC circuit that includes the membrane. Thanks to the small mass of the 2D resonator, both the single-photon optomechanical coupling strength and the electromechanical coupling strength can reach the strong coupling regime. This provides a way for high-speed quantum state transfer between a microwave photon, a phonon, and an optical photon.  相似文献   

6.
In this paper, a graphene-based metamaterial absorber is proposed and investigated numerically, in which the interaction between a split ring resonator (SRR) and graphene results in a high-Q absorption. To make a better understanding of the resonance mechanism, the electric and the magnetic fields, and the surface currents at the resonance frequency are investigated. In order to ease the analysis of the structure, an equivalent circuit model is introduced using the transmission line theory, and the accuracy of the proposed model is verified by the full-wave simulation. Finally, different aspects of the designed metamaterial are discussed as a potential label-free sensor for chemical and biomedical sensing. It is shown that by using this structure, a sensor with a sensitivity of 597 GHz/RIU can be achieved.  相似文献   

7.
800Hz Terfenol-D鱼唇式弯张换能器   总被引:6,自引:4,他引:2       下载免费PDF全文
本文研制了800Hz Terfenol-D鱼唇式弯张换能器,换能器设计中采用永磁偏磁场和能有效抑制涡流损耗的闭合磁路结构,最高声源级185dB,-3dB带宽180Hz,这种鱼唇工弯张换能器克服了连续直流提供偏磁场时发热强的缺点,并且仅需要普通的功率放大器,更适于长时间连续工作,使这一新型低频大功率水声换能器趋于实用化。  相似文献   

8.
安保林  林鸿  刘强  段远源 《物理学报》2013,62(17):175101-175101
黏度是流体的重要输运性质, 实验测量是获取黏度数据的基本手段. 圆柱定程干涉法是目前测量气相声速最精确的方法之一, 其测量参数为工质的声学共振频率和共振峰半宽. 共鸣腔中气相工质的黏性会导致共振频率的偏移和共振峰半宽的增加, 是声速测量中的重要非理想影响因素. 但通过对共振频率和共振峰半宽的精确测定, 并结合热边界层、进气导管、声学传感器及壳体振动等其他非理想因素的修正, 可以精确反推获得黏度. 本文从理论上探讨了应用圆柱定程干涉法测量共振频率或者共振峰半宽来得到黏度的新方法, 以氩 (Ar) 为例进行了实验验证, 测量结果与文献值具有较好一致性, 证实了方法的可行性. 关键词: 黏度 圆柱共鸣腔 共振频率 共振峰半宽  相似文献   

9.
The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.  相似文献   

10.
徐跃杭  国云川  吴韵秋  徐锐敏  延波 《物理学报》2012,61(1):10701-010701
结合石墨烯场效应晶体管和机械谐振原理,研究了基于本地背栅石墨烯谐振沟道晶体管(RCT) 的高频机械信号直接读取方法.利用机械剥离法获得的石墨烯,提出了一种基于刻蚀技术的器件制备方法, 并实现了栅长和栅宽分别为1 μm的本地背栅RCT.实验结果表明,在室温下RCT的谐振频率范围为57.5–88.25 MHz.研究结果对加速石墨烯纳米机电系统和高频低噪声器件的应用有着重要作用. 关键词: 石墨烯 谐振沟道晶体管 纳米机电系统  相似文献   

11.
利用朗缪尔探针和快速傅里叶变换研究了非平衡磁控溅射等离子体静电波动的驻波共振频谱特征。频带宽度为0~300kHz,典型放电条件下磁控靶前2cm和10cm两个位置的共振本征频率变化范围分别为10~50kHz和1~10kHz,研究了线圈电流、气压和放电功率等参数对共振本征频率的影响;指出了非平衡磁控溅射中能够导致等离子体静电驻波共振的两种势阱结构,提出驻波共振机制解释特征频率出现的原因,根据声驻波共振机制计算的电子温度数值符合实验的结果。  相似文献   

12.
利用朗缪尔探针和快速傅里叶变换研究了非平衡磁控溅射等离子体静电波动的驻波共振频谱特征。频带宽度为0~300kHz,典型放电条件下磁控靶前2cm和10cm两个位置的共振本征频率变化范围分别为10~50kHz和1~10kHz,研究了线圈电流、气压和放电功率等参数对共振本征频率的影响;指出了非平衡磁控溅射中能够导致等离子体静电驻波共振的两种势阱结构,提出驻波共振机制解释特征频率出现的原因,根据声驻波共振机制计算的电子温度数值符合实验的结果。  相似文献   

13.
谐振光学环型腔作为光学陀螺的核心敏感单元,其光学调制谱和与之对应的鉴频曲线的特性成为提高光学陀螺系统检测灵敏度的关键。为了研究光学陀螺的调制和鉴频谱线特性,优化陀螺性能,设计并搭建了实验测试系统,光纤环形谐振腔采用分光比为50∶50、直径17 cm的保偏光纤,总长2.2 m。使用直流高压放大器扫描窄线宽激光器(线宽小于1 kHz)的压电转化模块,扫描频率和电压分别选取20 Hz和1 V,使用模拟比例积分电路进行锁频并反馈给激光器的压电转化模块,使激光器的输出频率跟踪谐振腔实时变化。研究分析了光纤环型谐振腔在两种情况下所对应的透射谱和鉴频曲线:第一种情况为调制电压分别为2 V和4 V,对应调制频率从100 kHz到4 MHz变化;第二种情况为当调制频率为900 kHz,调制电压从2 V到10 V变化。通过实验,得到了不同调制参数下光学陀螺谱线的谐振深度、半高全宽、线性带宽、动态范围、品质因数、标度因数以及对应的锁频精度七种物理量的详细变化情况,并进一步得到了静态测试条件下三种陀螺的最佳调制频率及与之所匹配的调制电压。为进一步研究激光调制对光纤环型谐振腔光谱的影响提供指导。  相似文献   

14.
Parametric generation of intense solitonlike spin-wave pulses is experimentally observed in ring resonators based on ferromagnetic films under the effect of a periodic parallel pulsed magnetic pumping. Depending on the repetition rate of the pumping pulses and the position of their carrier frequency about the eigenfrequency spectrum of the ring resonator, different types of nonlinear pulse sequences are obtained. The theoretical explanation of this phenomenon is proposed.  相似文献   

15.
16.
设计了一种锥变截面管形超声振动系统,振动系统由夹心式压电换能器和锥形变截面金属圆管组成。推导了锥变截面管形超声振动系统的等效电路和谐振/反谐振频率方程。利用等效电路法、有限元法对锥变截面管形超声振动系统进行了分析设计并制作了相应的实验样品。研究结果表明,锥形变截面管的等效电路为一种新型的非互易二端口等效网络;锥变截面管形超声振动系统具有较好的频率隔离性、较大的位移振幅和均匀的振动位移输出。该超声振动系统可望在超声连续缝焊、环形部件的超声切割和超声钻孔等领域获得应用。   相似文献   

17.
A mass sensor using a nano-resonator has high detection sensitivity, and mass sensitivity is higher with smaller resonators. Therefore, carbon nanotubes (CNTs) are the ultimate materials for these applications and have been actively studied. In particular, CNT-based nanomechanical devices may experience high temperatures that lead to thermal expansion and residual stress in devices, which affects the device reliability. In this letter, to demonstrate the influence of the temperature change (i.e., thermal effect) on the mass detection sensitivity of CNT-based mass sensor, dynamic analysis is carried out for a CNT resonator with thermal effects in both linear and nonlinear oscillation regimes. Based on the continuum mechanics model, the analytical solution method with an assumed deflection eigenmode is applied to solve the nonlinear differential equation which involves the von Karman nonlinear strain–displacement relation and the additional axial force associated with thermal effects. A thermal effect on the fundamental resonance behavior and resonance frequency shift due to adsorbed mas, i.e., mass detection sensitivity, is examined in high-temperature environment. Results indicate a valid improvement of fundamental resonance frequency by using nonlinear oscillation in a thermal environment. In both linear and nonlinear oscillation regimes, the mass detection sensitivity becomes worse due to the increasing of temperature in a high-temperature environment. The thermal effect on the detection sensitivity is less effective in the nonlinear oscillation regime. It is concluded that a temperature change of a mass sensor with a CNT-based resonator can be utilized to enhance the detection sensitivity depending on the CNT length, linear/nonlinear oscillation behaviors, and the thermal environment.  相似文献   

18.
梁浩  李剑生  郭云胜 《物理学报》2015,64(14):144101-144101
通过将两个金属开口环谐振器口对口地放置, 实现了超材料谐振子间的电耦合谐振. 对电耦合谐振的微波等效电路进行了理论分析和数值计算, 结果表明耦合后的超材料谐振子能产生两个谐振频率, 其中一个随耦合强度的增加逐渐向低频方向移动, 而另一个固定在单谐振子的谐振频率处不变. 微波透射谱的实验测试和电磁仿真结果表明, 两个谐振峰随耦合强度的增加分别向低频和高频方向移动. 分析表明: 低频谐振峰的位置主要是由超材料谐振子间的电耦合强度决定的; 高频谐振偏离单谐振子的谐振频率主要是由不可避免的磁耦合引起的, 而且在耦合间距越小时磁耦合影响越大. 提出的基于超材料谐振子间的电磁耦合实现的双频谐振及其可调性极大地增加了超材料的设计与应用空间.  相似文献   

19.
We propose a tunable Autler–Townes splitting (ATS) window using the electro-optic effect. The proposed structure includes two cascaded silicon ring resonators side coupled to a straight waveguide. The electro-optic effect is created by a nano-layer graphene located on half of lower silicon ring resonator. Here for the first time, ATS window frequency location is adjusted by utilizing a graphene nano-sheet, so that its wavelength shift is more than 0.24 nm via changing the graphene chemical potential level from 0.445 eV to 0.667 eV. Moreover, we simulate and show the phase changes of the transmission curves around ATS frequency window and their corresponding group delays. Furthermore, switching from slow (fast) to fast (slow) light is another interesting phenomenon of the proposed structure.  相似文献   

20.
针对深水、低频、宽带换能器的技术需求,结合Janus-Helmholtz换能器的结构特点和铁镓单晶材料低场应变大及机械强度高的特性,提出了铁镓单晶Janus-Helmholtz换能器设计方案。采用永磁偏磁场和环形闭合磁路,建立了一系列铁镓单晶磁致伸缩换能器理论分析模型,包括对磁致伸缩材料参数进行线性化处理,设计了换能器最佳工作点,结合静态磁场和动态磁场分布情况分段细化换能器驱动等效参数,以及利用全阻抗模型通过电感损耗等效计算换能器静态阻抗,然后通过二维有限元分析等效模型,优化分析了换能器的结构参数与电声性能。最后制作了换能器样机,并进行了测试与分析。对比仿真和测试结果表明:全阻抗模型得到的阻抗曲线与样机测试结果相一致,有限元等效模型计算的发送电流响应与样机测试结果良好吻合。换能器样机水中谐振基频为1000 Hz,谐振频率下发送电流响应176.4 dB;在875~2300 Hz频率范围内,发送电流响应起伏不大于6 dB;增加驱动电流有效值到16.2 A,最大声源级可以达到196.2 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号