首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We present a set of ab initio energetics for a substitutional boron (B) impurity atom in subsurface positions, from the topmost to the fifth atomic layer, of both C(001)-2×1:H and C(111)-1×1:H. We compare the calculated surface-B binding energies with those obtained for P [T. Miyazaki, H. Kato, H. Okushi, S. Yamasaki, e-J. Surf. Sci. Nanotech. 4 (2006) 124]. The surface-P binding energies become larger as the position of P is closer to the two surfaces. They are up to 4 eV for C(001)-2×1:H and 2.6 eV for C(111)-1×1:H, respectively. For B, in contrast, the binding energies are within 0.5 eV for both surfaces. An implication of our finding in the context of a mechanism for P and B doping in diamond is discussed.  相似文献   

2.
We have studied temperature dependent photoluminescence (PL) from ZnO Multiple Quantum Wells (MQWs) of different well layer thicknesses in the range 1–4 nm grown on (0001) sapphire by a novel in-house developed buffer assisted pulsed laser deposition. At 10 K the PL peak shifted toward blue with decreasing well layer thickness and at constant well layer thickness the PL peak shifted towards red with increasing temperature. To the best of our knowledge we have observed for the first time an efficient room temperature (RT) PL emanating from such MQWs. The red shift of the PL peak with increasing temperature has been found to be due to the band gap shrinkage in accordance with the Varshni’s empirical relation. The spectral linewidth was found to increase with increasing temperature due to the scattering of excitons with acoustic and optical phonons in different temperature regimes. Both at RT and at 10 K the PL peak shifted with respect to the well layer thickness in the range of 3.35–3.68 eV with decreasing thickness in agreement with the calculated values.  相似文献   

3.
Photoluminescence investigations of ZnO nanorods realised by an advanced two-step aqueous chemical growth process have been carried out revealing well-resolved near-band-edge emission accompanied by phonon replicas. The optical properties of nanorods with different lengths and diameters are quite similar indicating a good control of the growth process without influencing the optical properties even on plastic substrate. The near-band-edge emission has a very broad line-width of 10 meV. Annealing in Ar atmosphere reduces the deep-level emission with a corresponding increase of the near-band-edge emission.  相似文献   

4.
Cubic-silicon carbide crystals have been grown from carbon-rich silicon solutions using the travelling-zone method. To improve the growth process, we investigated the effect of controlling more tightly some of the growth parameters. Using such improved growth conditions, our best sample is a 12 mm diameter and 3 mm long 3C–SiC crystal. It is grown on a (0001) 2 off, 6H–SiC seed and has 111-orientation. The low amount of silicon inclusions results in a reduced internal stress, which is demonstrated by the consideration of μ-Raman spectra collected at room temperature on a large number of samples.  相似文献   

5.
Zinc oxide nanostructured films were grown by the aqueous chemical growth technique using equimolar aqueous solutions of zinc nitrate and hexamethylenetetramine as precursors. Silicon(100) and glass substrates were placed in Pyrex glass bottles with polypropylene autoclavable screw caps containing the precursors described above, and heated at 95 C for several hours. X-ray diffraction 2θ/θ scans showed that the only crystallographic phase present was the hexagonal wurtzite structure. Scanning electron microscopy showed the formation of flowerlike ZnO nanostructures, consisting of hexagonal nanorods with a diameter of a few hundred nanometers. The photoluminescence spectra of the ZnO nanostructures were recorded at 18–295 K using a cw He–Cd laser (325 nm) and a pulsed laser (266 nm). The ZnO nanostructures exhibit an ultraviolet emission band centered at 3.192 eV in the vicinity of the band edge, which is attributed to the well-known excitonic transition in ZnO.  相似文献   

6.
Phosphorus-doped ZnO films were grown by pulsed laser deposition using a ZnO:P2O5-doped target as the phosphorus source with the aim of producing p-type ZnO material. ZnO:P layers (with phosphorus concentrations of between 0.01 to 1 wt%) were grown on a pure ZnO buffer layer. The electrical properties of the films were characterised from temperature dependent Hall-effect measurements. The samples typically showed weak n-type conduction in the dark, with a resistivity of 70 Ω cm, a Hall mobility of μn0.5 cm2 V −1 s−1 and a carrier concentration of n3×1017 cm−3 at room temperature. After exposure to an incandescent light source, the samples underwent a change in conduction from n- to p-type, with an increase in mobility and decrease in concentration for temperatures below 300 K.  相似文献   

7.
A quasi-distributed displacement sensor for structural monitoring using an optical time domain reflectometer is demonstrated. Four displacement sensing heads are placed along a standard single mode optical fibre in several locations with different intervals. Their configurations introduce power loss through the decrease of their fibre loop radius when displacement is applied. The decrease of the light intensity with displacement variation is reported. Losses of 9 dB for a 120 mm displacement with a sensitivity of 0.027 dB/mm are reported. The quasi-distributed configuration is able to address sensors with 1 m distance resolution between them.  相似文献   

8.
Scanning tunneling microscopy (STM) experiments reveal that Co growth on Ag(1 1 0), at coverages of Co < 1 ML and low substrate temperatures (150 K), involves a concomitant insertion of Co into the top Ag layer and exchange of Ag out onto the surface. At 300 K, coverages of Co > 1 ML gives rise to a 3D nanocluster growth on the surface, with the clusters covered by Ag. Depending slightly on coverage, the clusters have a typical diameter of 3 nm and a height of 0.4 nm. Upon annealing to 500 K, major changes are observed in the morphology of the surface. STM and AES show that there is a reduction of the number of Co islands on the surface, partly due to subsurface Co cluster migration and partly due to sintering into larger clusters.  相似文献   

9.
Optical properties of lead-iodide-based one-dimensional perovskite-type crystals [NH2C(I)=NH2]3PbI5 and [CH3SC(=NH2)NH2]3PbI5 have been investigated theoretically and experimentally. The electronic and excitonic structures are studied based on group theoretical consideration and first-principle band calculation. Strong one-dimensional anisotropy of the optical absorption spectra, large Stokes shifts (1.0 eV) and huge exchange energies (70 meV) indicate that the excitons in these crystals are one-dimensional Frenkel excitons.  相似文献   

10.
Large scale metallic Zn microspheres and hollow ZnO microspheres are synthesized by thermal evaporation and vapor transport by heating a ZnO/graphite mixture at 1000 °C. Firstly, metallic Zn microspheres are fabricated with diameters in the range of 1–10 μm. The Zn microspheres are then annealed at 600 °C in air, which form hollow semiconducting ZnO microspheres. EDX and XRD spectra reveal that the oxidized material is indeed ZnO. Room temperature photoluminescence spectra of the oxidized material show a sharp peak at 380 nm and a wider broad peak centered at 490 nm. This growth mechanism is discussed and further investigated for other metallic and metal oxide microstructures.  相似文献   

11.
In this paper, a novel all-optical microwave generation technique based on a dual-wavelength single-longitudinal-mode (SLM) distributed Bragg reflector (DBR) fiber laser is proposed and demonstrated. By exploiting spatial hole burning (SHB) effect, this laser could provide stable dual-wavelength SLM operation with a wavelength separation of 0.088 nm corresponding to the microwave signal at 10.484 GHz with a 3 dB bandwidth of 28 kHz. By appropriately adjusting the pump power, dual-wavelength oscillation could be maintained at different temperatures. We have theoretically analyzed the mechanism for microwave generation of the proposed DBR laser, and the calculated microwave frequency is in good agreement with our experimental results. Furthermore, experimental observation shows both of the laser wavelengths and generated microwave signals have good stability at room temperature.  相似文献   

12.
Polycrystalline TbMn2O5 was prepared by the standard solid-state reaction method and characterized by powder X-ray diffraction and magnetization to assure it is of single phase. Heat capacity measurements on the compound reveal an antiferromagnetic phase transition at 45 K. A broad peak below 6 K in the heat capacity measurements corresponds to the crossover transition of Tb3+ ordering. To confirm these magnetic orderings, neutron powder diffractions on TbMn2O5 with XYZ neutron polarization analysis were performed at the diffuse neutron scattering (DNS) spectrometer, FRJ-II, by using neutron wavelength of 4.8 Å in the temperature range of 1.8–250 K. Magnetic scattering was separated from nuclear coherent and spin incoherent scattering contributions. Long-range ordered magnetic peaks were observed below 39 K which is consistent with the heat capacity results. The drastic increasing intensities below 6 K indicate the ferromagnetic transition in Tb3+ orderings.  相似文献   

13.
The mechanism(s) of arsenate and selenate incorporation into hydroxylapatite (HAP) using extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated for As- and Se-doped HAP samples with concentrations between 200 and 2500 ppm. EXAFS data on As and Se K-edges have shown similar local coordination environments and are similar to that of P in HAP, suggesting the substitution of arsenate or selenate tetrahedra on the phosphate sites. EXAFS best-fitting for As-doped samples shows that the first shell is fitted with approximately 4 O atoms at 1.68 Å, showing As(V) in tetrahedral coordination, and Se K-edge EXAFS data are characterized by the backscattering contributions an oxygen shell at 1.2 Å in the Fourier transform, which can be fit with 4 O atoms at 1.65 ± 0.01 Å. This is characteristic of Se–O distances in SeO4 tetrahedron. These findings suggest that arsenate and selenate substitute for phosphate groups with local distortions during the incorporation of these metals into the structure of HAP.  相似文献   

14.
We report the fabrication of high optical quality single wall carbon nanotube polyvinyl alcohol composites and their application in nanotube based photonic devices. These show a broad absorption of semiconductor tubes centred at 1.55 μm, the spectral range of interest for optical communications. The films are used as mode-lockers in an erbium doped fibre laser, achieving 700 fs mode-locked pulses. Raman spectroscopy shows no damage after a long time continuous laser operation.  相似文献   

15.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

16.
ZnO microcrystals and nanocrystals were grown on silicon substrates by condensation from vapour phase. Nanostructured ZnO films were deposited by plasma enhanced metal organic chemical vapour deposition (PEMOCVD). The parameters of field emission, namely form-factor β and work function , were calculated for ZnO structures by the help of the Fowler–Nordheim equation. The work functions from ZnO nanostructured films were evaluated by a comparison method. The density of emission current from ZnO nanostructures reaches 0.6 mA/cm2 at electric force F=2.1105 V/cm. During repeatable measurements β changes from 5.8104 to 2.3106 cm−1, indicating improvement of field emission. Obtained values of work functions were 3.7±0.37 eV and 2.9–3.2 eV for ZnO nanostructures and ZnO films respectively.  相似文献   

17.
Extended-Range Bonner sphere spectrometers (ERBSSs) are well suited for measurements in high-energy stray neutron fields, where neutron energies extend from thermal to a few hundred MeV. These fields typically have a thermal peak, a fairly flat intermediate region, a medium energy peak at 1 MeV and a high-energy peak at a few 100 MeV. The data analysis is not straightforward: it requires unfolding with response functions that have a substantial amount of overlap, and the responses of the modified spheres (which provide information about the fluence at high energies) increase dramatically above 100 MeV. In this paper, I try to determine which of the main features of the spectrum are well determined by the data given optimal methods of analysis, and which features are subject to ambiguity. To do this, I analyse ERBSS measurements using two methods of analysis that are particularly useful for this purpose, Bayesian parameter estimation and maximum entropy unfolding.  相似文献   

18.
A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of 75%.  相似文献   

19.
The tunneling conductance in a NG/SG graphene junction in which the graphene was grown on a SiC substrate is simulated. The carriers in the normal graphene (NG) and the superconducting graphene (SG) are treated as massive relativistic particles. It is assumed that the Fermi energy in the NG and SG are EFN400 meV and EFS400 meV+U, respectively. Here U is the electrostatic potential from the superconducting gate electrode. It is seen that the Klein tunneling disappears in the case where a gap exist in the energy spectrum. As U→∞, the zero bias normalized conductance becomes persistent at a minimal value of G/G01.2. The normalized conductance G/G0 is found to depend linearly on U with constant slope of , where is the size of the gap Δ opening up in the energy spectrum of the graphene grown on the SiC substrate. It is found that G/G02+αU for potentials in the range −270 meV<U<0 meV and G=0 for potentials U<−270 meV. As α→∞, the conductance for eV=Δ (V is the bias voltage placed across the NG/SG junction) can be approximated by a unit step function G(eV=Δ,U)/G02Θ(U). This last behavior indicates that a NG/SG junction made with gapped graphene could be used as a nano switch having excellent characteristics.  相似文献   

20.
The strain-relaxation phenomena and the formation of a dislocation network in 2H-InN epilayers during molecular beam epitaxy are reported. The proposed growth model emphasizes the dominant role of the coalescence process in the formation of a dislocation network in 2H-InN. Edge type threading dislocations and dislocations of mixed character have been found to be the dominating defects in wurtzite InN layers. It is demonstrated that these dislocations are active suppliers of electrons and an exponential decay of their density with the thickness implies a corresponding decay in the carrier density. Room temperature mobility in excess of 1500 cm2 V −1 s−1 was obtained for 800 nm thick InN layers with dislocation densities of 3×109 cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号