首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

2.
We have studied crystal structure and transport properties of the quasi one-dimensional cobalt oxide CaCo2O4. The CaCo2O4 phase crystallizes in calcium-ferrite type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. Large thermoelectric power (S  150 μV/K at 390 K) with metallic temperature dependence of S, moderate resistivity (ρ  2.9 × 10−1 Ω cm at 390 K) with carrier localization at low temperature, and normal thermal conductivity (κ  6.3 W/Km at 390 K) were observed. The phonon mean-free path was calculated from the observed data, as a function of temperature. The long phonon mean-free path (l  24 Å at 300 K) implies that the thermal conductivity could be suppressed by impurity scattering of phonons with partial element substitution.  相似文献   

3.
Polycrystalline TbMn2O5 was prepared by the standard solid-state reaction method and characterized by powder X-ray diffraction and magnetization to assure it is of single phase. Heat capacity measurements on the compound reveal an antiferromagnetic phase transition at 45 K. A broad peak below 6 K in the heat capacity measurements corresponds to the crossover transition of Tb3+ ordering. To confirm these magnetic orderings, neutron powder diffractions on TbMn2O5 with XYZ neutron polarization analysis were performed at the diffuse neutron scattering (DNS) spectrometer, FRJ-II, by using neutron wavelength of 4.8 Å in the temperature range of 1.8–250 K. Magnetic scattering was separated from nuclear coherent and spin incoherent scattering contributions. Long-range ordered magnetic peaks were observed below 39 K which is consistent with the heat capacity results. The drastic increasing intensities below 6 K indicate the ferromagnetic transition in Tb3+ orderings.  相似文献   

4.
The binary system CeO2–ZrO2 is thermally stable and has superior reduction–oxidation properties. It has been commonly used in the three-way catalytic converters for automobiles. In this work, an inorganic biomorphic porous CexZr1−xO2 fibrous network was successfully synthesized by using the egg shell membrane (ESM) as templates, and its morphology was a perfect replica of the original ESM. The synthesis involved a simple infiltration and calcination process. A fresh ESM was peeled from a chicken egg shell. It was soaked in a Ce(NO3)3 and Zr(NO3)4 mixture before it was calcined at 700 °C in ambient environment. The fibers in the biomorphic network had diameter ranged from 1 to 4 μm, and they were composed of CexZr1−xO2 nanocrystallites having an average grain size of 10 nm.  相似文献   

5.
A helium-free mini TEA CO2 laser has been operated at a repetition rate of 100 Hz wherein the gas re-circulatory loop consisting of heat exchanger and catalytic converter, mandatory for conventional repetitive operation of such lasers, have been totally dispensed with. The laser utilized inexpensive molecular gases alone that were simply flown out transversely through the inter-electrode region by an open gas flow system. The active medium was energized by making use of a spiker-sustainer excitation scheme. At this repetition rate, the laser produced an average power of 3.50 W.  相似文献   

6.
The competition between ion–water electrostatic interactions and water–water hydrogen bonding in cluster ions depends on several factors, including charge density of the ion and temperature of the system. Infrared photodissociation spectra of Rb+(H2O)n=2–5 and Rb+(H2O)n=1–5Ar are presented here and compared to previous experiments involving potassium and cesium. The temperature, or internal energy, of hydrated rubidium cluster ions is controlled by varying the evaporative path available for cluster formation. Warmer clusters (with effective temperatures of 250–500 K) are formed by the evaporation of water, while colder clusters (40–120 K) can be formed by argon evaporation. Colder cluster ions tend to favor conformers with more hydrogen bonds compared to those cluster ions at warmer temperatures. Previous work from this laboratory has shown significant and dramatic differences between the spectra of hydrated potassium and cesium ions. With a charge density intermediate between that of K+ and Cs+, Rb+ plays an important role in bridging the gap in our previous studies.  相似文献   

7.
The formation of silicon nanoclusters embedded in amorphous silicon nitride (SiNx:H) can be of great interest for optoelectronic devices such as solar cells. Here amorphous SiNx:H layers have been deposited by remote microwave-assisted chemical vapor deposition at 300 °C substrate temperature and with different ammonia [NH3]/silane [SiH4] gas flow ratios (R=0.5−5). Post-thermal annealing was carried out at 700 °C during 30 min to form the silicon nanoclusters. The composition of the layers was determined by Rutherford back scattering (RBS) and elastic recoil detection analysis (ERDA). Fourier transform infrared spectroscopy (FTIR) showed that the densities of SiH (2160 cm−1) and NH (3330 cm−1) molecules are reduced after thermal annealing for SiN:H films deposited at flow gas ratio R>1.5. Breaking the SiH bonding provide Si atoms in excess in the bulk of the layer, which can nucleate and form Si nanostructures. The analysis of the photoluminescence (PL) spectra for different stoichiometric layers showed a strong dependence of the peak characteristics (position, intensity, etc.) on the gas flow ratio. On the other hand, transmission electron microscopy (TEM) analysis proves the presence of silicon nanoclusters embedded in the films deposited at a gas flow ratio of R=2 and annealed at 700 °C (30 min).  相似文献   

8.
Gd1−xCaxBaSrCu3O7−δ samples (0  x  0.1) were prepared via solid-state reaction. Four-point probes method was used for resistance versus temperature measurements. Results show decrease in Tc by increasing x content. This variation is assumed to be irrelevant to the different phases or impurity effects since X-ray patterns show all samples are tetragonal single-phase. Ca doping decreases the oxygen content and lattice parameters of the samples. It is suggested that Ca prevents the dislocation of oxygen, and then disrupts the hole concentration of the system and antiferromagnetic correlation at CuO2 planes. Subsequently, destroys the superconductivity of the samples.  相似文献   

9.
Nano-crystalline indium oxide (In2O3) particles have been synthesized by sol–gel and hydro-thermal techniques. A simple hydro-alcoholic solution consisting indium nitrate hydrate and citric acid (in sol–gel method) and 1, 4-butandiol (in hydro-thermal method) have been utilized. The structural properties of indium oxide nano-powders annealed at 450 °C (for both methods) have been characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and specific surface area (SSA) analysis. Structural analysis of the samples shows cubic phase in sol–gel and cubic-hexagonal phase mixture in hydro-thermally prepared particles. The nano-particles prepared by sol–gel method have nearly spherical shape, whereas hydro-thermally-made ones display wire- and needle-like shape in addition to the spherical shape. The obtained In2O3 nano-particles surface areas were 23.2 and 55.3 in sol–gel and hydro-thermal methods, respectively. The optical direct band gap of In2O3 nano-particles were determined to be 4.32 and 4.24 eV for sol–gel and hydro-thermal methods, respectively. These values exhibit 0.5 eV blue shift from that the bulk In2O3 (3.75 eV), which is related to the particle size reduction and approaching the quantum confinement limit of nano-particles.  相似文献   

10.
We report on the density of states measurements of Bi2212 (Bi2+xSrxCaCu2O8+δ) near the superconductivity-insulator transition using a low temperature scanning tunneling microscope. We prepared highly underdoped Bi rich Bi2212 single crystals (Tc  32 K). The energy gap distribution did not provide an energy scale proportional to Tc. Averaged tunnel spectra with various doping levels were scaled into a single line if energy was normalized by their respective gap values. This indicated there was no crossover energy, which separates a pseudogap and a superconducting gap.  相似文献   

11.
We report the upper critical field Hc2 in a ternary iron-silicide superconductor Lu2Fe3Si5 with Tc  6 K obtained by the resistivity measurements. We find that Hc2 increases linearly with decreasing temperature down to Tc/3, and Hc2(T = 0) exceeds the orbital depairing field described by the Werthamer–Helfand–Hohenberg theory. We also find that the anisotropy of Hc2 is nearly independent of temperature and the angular dependence of Hc2 is well-described by the anisotropic Ginzburg–Landau model. These results strongly indicate the presence of two distinct superconducting gaps in Lu2Fe3Si5 although the behavior is slightly different from that of the typical two-gap superconductor MgB2.  相似文献   

12.
Passively Q-switched output of a flashlamp-pumped 1.319 μm Nd:YAG laser is realized by using Co2+:LaMgAl11O19 (Co:LMA) as saturable absorber. When initial transmission of the saturable absorber T0 is 78%, a Q-switched output pulse with pulse width (FWHM) 44.8 ns and pulse energy 17.4 mJ is obtained, corresponding to 19.3% of the free-running energy under the equal pumping energy of 45.4 J. The experimental results show that the higher T0 will result in a lower pumping threshold of the laser, but lower T0 can make the laser generate pulses with higher single-pulse energy, narrower pulse width, and accordingly higher peak power.  相似文献   

13.
Magnetic oxide CuFeO2 is a magnetoelectric multiferroic with new type of spin–polarization coupling different from that in the spin-current mechanism, where magnetic field-induced or nonmagnetic impurity-induced proper helical magnetic ordering generates a spontaneous electric polarization parallel to the helical axis. Using a CuFe1−xGaxO2 sample with x=0.035, in which the single ferroelectric phase is realized below TN8 K in zero magnetic field unlike CuFe1−xAlxO2, we have performed pyroelectric current, thermally stimulated current (TSC) and polarized neutron diffraction measurements to study a memory effect that the electric polarization is partially preserved even for 2nd-cooling from above TN without poling electric field. It was found that the charge trapped during 1st-cooling with poling electric field, which is released as TSC on heating, plays an important role in the memory effect.  相似文献   

14.
Optical transmittance measurements near the absorption edge of [Kx(NH4)1−x]2ZnCl4 mixed crystals, where x=0.00, 0.232, 0.522, 0.644, 0.859 and 1.00, are reported over 276–350 K range. Analysis reveals that the type of transition is the indirect allowed one. The absorption edge shifted towards lower energy with increasing temperature. It is shown that [Kx(NH4)1−x]2ZnCl4 mixed crystals with x0.644 reveal a phase transition at 319 K, this phase disappeared at high concentrations of K+ ions. The steepness parameter is given, its value is used to estimate the temperature dependence of the indirect energy gap. In the region of the absorption edge, the absorption coefficient obeys Urbach's rule. Urbach parameters are investigated as a function of temperature.  相似文献   

15.
We have successfully grown single crystals of oxygen deficient oxypnictide superconductor PrFeAsO1−y using high pressure synthesis technique. Typical crystal size is about 600 × 800 × 30 μm3, with its Tc = 44 K. Their resistivity measurements under magnetic field yield the anisotropic factor Γ  5, consistent with previous results on smaller single crystals.  相似文献   

16.
The effect of stoichiometry on the combustion behavior of the nanoscale aluminum molybdenum trioxide (nAl/MoO3) thermite was studied in a burn tube experiment by characterizing the propagation velocity and pressure output of the reaction. Changing the stoichiometry affects the combustion through changes in the product temperature, phase, and composition. The mixture ratios of the composites were varied over an extremely wide range (5% nAl (95% MoO3)–90% nAl (10% MoO3)). Results revealed three separate combustion regimes: a steady high speed propagation (100 to 1000 m/s) from approximately 10% to 65% nAl, an oscillating and accelerating wave near 70% nAl, and a steady-slow speed propagation (0.1–1 m/s) from approximately 75% to 85% nAl. Propagation was observed to fail both <10% nAl and >85% nAl. This is the first known observation of such limits for a nanoscale thermite in a tube geometry. The instrumented tube tests revealed peak pressures over 8 MPa near stoichiometric conditions in the steady high speed propagation region, no measurable pressure rise at low speed propagation, and building pressures for accelerating waves. The results suggest the propagation mode to be a supersonic convective wave for near stoichiometric mixtures and a conductive deflagration for extremely fuel-rich mixtures. The implications of these results for microscale combustion applications are discussed.  相似文献   

17.
Transport properties of BaNi2P2 single crystals prepared by high-pressure synthesis method have been investigated. The temperature dependence of the resistivity is that of a typical metal with the anisotropy ratio ρ/ρ of 6.3 and suggests that electron–phonon interaction dominates the scattering mechanism. We have also found that the Hall effect and the magnetoresistance can be explained by a two-carrier model which is consistent with a multiple-band structure with both hole and electron characters.  相似文献   

18.
The atomistic calculations of the physical properties of perfect single-walled carbon nanotubes based on the use of the translational symmetry of the nanotubes face increasing computational difficulties for most of the presently synthesized nanotubes with up to a few thousand atoms in the unit cell. This difficulty can be circumvented by use of the helical symmetry of the nanotubes and a two-atom unit cell. We present the results of such symmetry-adapted tight-binding calculations of the totally symmetric A1 phonons (the RBM and the G-band modes) and their resonant Raman intensity for several hundred nanotubes.In particular, we show that (1) the frequencies and the resonant Raman intensity of the RBM and the G-band modes show diameter and chirality dependence and family patterns, (2) the strong electron– phonon interactions in metallic nanotubes lead to Kohn anomalies at the zone center, (3) the G-band consists of a subband due to phonons of semiconducting tubes centered at 1593 cm−1, a subband of phonons at 1570 cm−1, and a subband of phonons of metallic tubes at 1540 cm−1. The latter prediction confirms previous theoretical results but disagrees with the commonly adopted assignment of the G-band features.  相似文献   

19.
We report the low-threshold operation of a nanosecond β-BaB2O4 optical parametric oscillator (OPO) pumped by the third harmonic of a Q-switched Nd:YAG laser. Using cylindrical focusing of the pump beam, a threshold pulse energy of 0.5 mJ is obtained at the signal wavelength of 560 nm, which is about sixteen times lower than that of a spherical focusing configuration. The importance of diffraction loss in the design of tightly focused OPOs is discussed in terms of a simple extension of the conventional OPO model.  相似文献   

20.
Spectroscopic ellipsometry and Monte Carlo simulations are employed to answer the fundamental question whether the energy gaps of Si nanocrystals with sizes in the range of 3–5 nm, which are embedded in amorphous silica, follow or deviate from the quantum confinement model, and to examine their interfacial structure. It is shown that the optical properties of these nanocrystals are well described by the Forouhi–Bloomer interband model. Analysis of the optical measurements over a photon-energy range of 1.5–5 eV shows that the gap of embedded nanocrystals with a mean size of 3.9 nm follows closely quantum confinement theory. A large band gap expansion (0.65 eV) compared to bulk Si is observed. The Monte Carlo simulations reveal a non-abrupt interface and a large fraction of interface oxygen bonds. This, in conjunction with the experimental observations, indicates that oxygen states and the chemical disorder at the interface have a negligible influence on the optical properties of the material in this size regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号