首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A series of 6,12-bis[(trialkylsilyl)ethynyl]indeno[1,2-b]fluorene-5,11-diones has been synthesized. X-ray crystallographic analysis of these compounds reveals that triisopropylsilyl (TIPS) substitution on the alkyne terminus affords the largest number of intermolecular π-π interactions in the solid state. Conversely, use of trialkylsilyl groups smaller or larger than TIPS furnishes a variety of crystal-packing motifs that contain fewer π-π interactions. Electrochemical and photophysical data suggest that these molecules are excellent electron-accepting materials.  相似文献   

2.
Solvothermal reactions of Co(II), Ni(II), Zn(II) salts with 2,2'-dinitrobiphenyl-4,4'-dicarboxylate (dnpdc) and 2,2'-bipyridyl-like chelating ligands yielded five compounds formulated as [Co(dnpdc)(bipy)](n)·nH(2)O (1), [M(dnpdc)(phen)](n) (2, M = Co; 3, M = Ni; 4, M = Zn) and [Co(dnpdc)(biql)](n)·2nH(2)O (5) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline and biql = 2,2'-biquinoline). With bipy or phen as coligands, compounds 1-4 exhibit isomorphous 3D M(dnpdc) metal-organic frameworks in which double carboxylate bridged chains are interlinked by the backbones of the dicarboxylate ligands. The bipy or phen ligands are involved in interchain hydrogen bonding or π-π interactions to form 1D zipper-like arrays in the rhombic channels of the frameworks, playing a templating role and determining the channel dimensions. The biql coligand is too bulky for the 1D double carboxylate bridged chain and the rhombic channel. Instead, in compound 5, the dnpdc ligands link metal ions into 1D zigzag metal-organic chains and the biql ligands are arranged into 2D (6,3) arrays through extensive π-π stacking interactions. In compounds 1-3, the double carboxylate bridges in the nonplanar syn-skew conformation mediate ferromagnetic interactions along the chains, while the chelating ligands provide supramolecular pathways for interchain antiferromagnetic interactions. The π-π interactions in 5 also evoke weak antiferromagnetic interactions.  相似文献   

3.
The MP2/6-31G*(0.25) π-π or π(+)-π T-shaped (edge-to-face) interactions between neutral or protonated histidine and adenine were considered using computational models of varying size to determine the effects of the protein and DNA backbones on the preferred dimer structure and binding strength. The overall consequences of the backbones are reasonably subtle for the neutral adenine-histidine T-shaped dimers. Furthermore, the minor changes in the binding strengths of these dimers upon model extension arise from additional (attractive) backbone-π (bb-π) contacts and changes in the preferred π-π orientations, which is verified by the quantum theory of atoms in molecules (QTAIM). Since the binding strength of the extended dimer equals the sum of the individual backbone-π and π-π contributions, the π-π component is not appreciably affected by polarization of the ring upon inclusion of the biological backbone. In contrast, the larger effect of the backbone on the protonated histidine dimers cannot simply be predicted as the sum of changes in the π-π and bb-π components regardless of the dimer type or model. This suggests, and QTAIM qualitatively supports, that the magnitude of the π(+)-π contribution changes, which is likely due to alterations in the electrostatic landscape of the monomer rings upon inclusion of the biological backbone that largely affect T-shaped dimers. These findings differ from those previously reported for (neutral) π-π stacked and (metallic) cation-π interactions, which highlights the distinct properties of each (π-π, π(+)-π, and cation-π) classification of noncovalent interaction. Furthermore, these results emphasize the importance of considering backbone-π interactions when analyzing contacts that appear in experimental crystal structures and cautions the use of truncated models when evaluating the magnitude of the π(+)-π contribution present in large biological complexes.  相似文献   

4.
It was observed that the relative position of the arene substituents has a profound influence on the strength of π-π stacking in the 9-benzyl-substituted triptycene system. A new series of model compounds (3a-i) capable of revealing quantitatively π-π stacking interactions was studied. This series of compounds (3a-i) has an ortho-substituted methyl group in one of the two interacting arenes and the syn/anti ratios were determined and compared to a series previously studied compounds (4a-i) that have a para methyl group on the corresponding arene. A greater than 50% increase in the strength of π-π stacking interactions was observed with the methyl group in the ortho position comparing to that in the para position. No difference in π-π stacking interactions was observed when the other aromatic ring was a pentafluorobenzoate group.  相似文献   

5.
Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.  相似文献   

6.
By doping π-π systems with Li atom, a series of Li@sandwich configuration and Li@T-shaped configuration compounds have been theoretically designed and investigated using density functional theory. It is revealed that energy gaps (E gap) between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of all compounds are in a range of 0.4–0.9 ev. When Li atom is introduced into different sandwich configuration π-π systems (C60-toluene, C60-fluorobenzene, C60-phenol, C60-benzonitrile), Li@C60-benzonitrile exhibits considerable first hyperpolarizability as large as 19,759 au, which is larger by about 18,372–18,664 au than those of other compounds. When Li atom is introduced into different T-shaped configuration π-π systems (C60-pyridine, C60-pyrazine, C60-1, 3, 5-triazine, C60-pyridazine), Li@C60-pyridazine is found to present largest first hyperpolarizability up to 67,945 au in all compounds. All compounds are transparency in the deep ultraviolet spectrum range. We hope that this study could provide a new idea for designing nonlinear optical materials using π-π systems as building blocks.  相似文献   

7.
Direct link: Two directly linked benzonorrole dimers were prepared and characterized, and both have short interplane distances less than 3.5??. While a strong π-π interaction was recognized in the oxidized form (left), only a negligible π-π interaction was observed in the reduced form (right) in spite of its shorter π-π distance.  相似文献   

8.
The bioorganometallic platinum(II) compounds PtU6 and PtU5 were designed by the conjugation of the corresponding uracil derivative and the organoplatinum(II) compound [4-octyloxy-(C^N^N)PtCl]. The single crystal X-ray structure determination of PtU6 revealed the formation of the dimeric structure through intermolecular hydrogen bonds between the uracil moieties of two independent molecules, wherein each hydrogen-bonded dimer was connected through Pt(II)-Pt(II) and π-π interactions. The tuning of the emission properties of the organoplatinum(II) compounds was achieved by changing the direction of hydrogen bonding sites and the molecular scaffold having two 2,6-dihexamidopyridine moieties as a complementary hydrogen bonding site for the uracil moiety, which depends on the regulation of the aggregated structures, to induce the Pt(II)-Pt(II) and π-π interactions.  相似文献   

9.
在微波辐射条件下合成了两种新的离子液体金属配合物[Ni(m-HNDA)2(H2O)4](1),[Zn(m-HNDA)2(H2O)4]·H2O(2),用元素分析、红外光谱、紫外光谱对它们进行了表征,通过X射线单晶衍射测定了它们的晶体结构.在晶体结构中,标题物通过基团间的嵌合作用,π-π相互作用和分子间氢键自组装成了三维网状的多孔结构.由氢键和π-π相互作用的强弱推测标题物的稳定性次序2>1,与实测热稳定性次序完全吻合;电化学性质表明,金属的配位改变了配体的循环伏安性质.另外,两种配合物可在水溶液中高选择性的识别氟离子.  相似文献   

10.
A series of new ladder π-conjugated materials, phosphole modified pentathienoacene (PO-PTA), are synthesized and characterized. Single-crystal X-ray results demonstrate that methyl-disubstituted PO-PTA forms a face-to-face dimer structure driven by π-π interactions. The investigations of optical properties showed that the oxidized phosphole moiety in this ladder system can effectively narrow the band gap. PO-PTA is a promising building block in π-conjugated polymers and oligomers for optoelectronic applications. The derivative of PO-PTA, obtained by introducing four long alkyl chains, can self-assemble into one-dimensional (1D) fibers based on intermolecular π-π interactions, dipole-dipole interactions and van der Waals interactions. Interestingly, the uniform and well-ordered monolayers were also obtained for PO-PTA derivative on a HOPG (highly oriented pyrolytic graphite) surface.  相似文献   

11.
This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions.  相似文献   

12.
FeCl?-mediated oxidative cyclization was successfully used to construct an extended thiophene-pendant pyrene skeleton and synthesize a novel thiophene-fused polycyclic aromatic (THTP-C) with a tetracene core. The identity of the compound was confirmed by 1H-NMR, 13C-NMR, MS, and elemental analysis. Meanwhile, a single crystal of THTP-C was obtained and analyzed by X-ray single-crystal diffraction. THTP-C has a "saddle" shaped π-conjugated 1-D supramolecular structure, and favors highly ordered self-assembly by π-π interactions as evidenced by its concentration-dependent 1H-NMR spectra in solution. The optical properties of THTP-C were investigated by ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy and its electrochemical properties were investigated by cyclic voltammetry (CV). The relatively large band gap (2.86 eV), low E(HOMO) level (-5.64 eV) and intermolecular π-π interactions imply that THTP-C has a high stability against photo-degradation and oxidation, and may be a promising candidate for stable hole-transporting materials.  相似文献   

13.
Facile synthesis of xanthene-based π-stacked compounds consisting of face-to-face p-oligophenyls has been described. Just by mixing xanthene-4,5-diboronic acid and p-oligophenyls containing a benzenetetraol unit yielded cyclic compounds selectively due to the reversibility of the boronate esterification. In the ground state, weak π–π interactions between two p-oligophenyl moieties were observed, whereas their π–π interactions were clearly shown in the excited state.  相似文献   

14.
The small Stokes shift and weak emission in the solid state are two main shortcomings associated with the boron-dipyrromethene (BODIPY) family of dyes. This study presents the design, synthesis and luminescent properties of boron difluoro complexes of 2-aryl-5-alkylamino-4-alkylaminocarbonylthiazoles. These dyes display Stokes shifts (Δλ, 77–101 nm) with quantum yields (ϕFL) up to 64.9 and 34.7 % in toluene solution and in solid state, respectively. Some of these compounds exhibit dual fluorescence and room-temperature phosphorescence (RTP) emission properties with modulable phosphorescence quantum yields (ϕPL) and lifetime (τp up to 251 μs). The presence of intramolecular H-bonds and negligible π-π stacking revealed by X-ray crystal structure might account for the observed large Stokes shift and significant solid-state emission of these fluorophores, while the enhanced spin-orbit coupling (SOC) of iodine and the self-assembly driven by halogen bonding, π-π and C−Hπ interactions could be responsible for the observed RTP of iodine containing phosphors.  相似文献   

15.
林奇  魏太保  姚虹  张有明 《化学学报》2007,65(2):159-164
合成了3种N-乙氧羰基-N'-取代芳基硫脲并确定了其晶体结构, 晶体结构表明, 在这些化合物中存在分子内及分子间的氢键, 分子间的氢键将化合物12组装成了一维链状的超分子结构, 由于空间因素, 化合物3没有形成类似于1, 2中的氢键组装成的链状超分子结构, 而是形成了氢键链接的二聚体. 同时在化合物1, 3中还存在分子间的芳环间的π-π相互作用. 在化合物1的晶体中, 这种π-π相互作用使相邻的超分子链之间相互关联. 化合物3的晶体中, 相邻的二聚体间又通过π-π相互作用连接成了无限延伸的一维链状结构.  相似文献   

16.
A series of new [2,2]fluorenophanes has been synthesized and characterized; among them, molecules of crystallographically asymmetric anti-[2.2](1,4)(4,1)fluorenophane ( K2C -2) aggregate to form one-dimensional supramolecular chain structures through effective intermolecular π-π overlapping. This, in combination with the synergistic intramolecular π-π interaction, leads to prominent dual emission mediated by charge transfer (CT) exciton delocalization. Support of this new insight is given by mapping the transition density along the π-π packing direction where the intramolecular excitation and intermolecular CT coexist in K2C -2.  相似文献   

17.
The electronic transport properties of single [2,2]paracyclophane molecules directly connected to gold and platinum electrodes have been investigated both theoretically and experimentally by using first-principles quantum transport simulations and break-junction experiments. For comparison, investigations on [3,3]- and [4,4]-paracyclophanes have also been performed. Our calculations show that the strength of the π-π interaction in paracyclophanes is critically dependent on the inter-ring distance. In contrast to [4,4]paracyclophane in which the π-π interaction is very weak due to the large inter-ring distance, the π-π interaction in [2,2]- and [3,3]-paracyclophanes is rather strong and dominates the electronic transport properties. In particular, for the asymmetric Au-[2,2]paracyclophane-Au junction in which the [2,2]paracyclophane molecule is connected to each gold electrode through a Au adatom and the two Au adatoms are attached in η(1)-fashion to two carbon atoms in the benzene backbones connecting with different ethylene groups, the transmission coefficient at the Fermi level is calculated to be 1.0 × 10(-2), in excellent agreement with experiments. When the gold electrodes are replaced by platinum, the calculated transmission coefficient at the Fermi level of the symmetric Pt-[2,2]paracyclophane-Pt junction with one Pt adatom used as the linker group is increased to 0.83, demonstrating that the π-π stacking in [2,2]paracyclophane is efficient for electron transport when the molecule-electrode interfaces are electronically transparent. This is confirmed by our preliminary experimental studies on the Pt-[2,2]paracyclophane-Pt junctions, for which the low-bias junction conductance has reached 0.40 ± 0.02 G(0) (G(0) is the conductance quantum). These findings are helpful for the design of molecular electronic devices incorporating π-π stacking molecular systems.  相似文献   

18.
The (gas-phase) MP2/6-31G*(0.25) π···π stacking interactions between the five natural bases and the aromatic amino acids calculated using (truncated) monomers composed of conjugated rings and/or (extended) monomers containing the biological backbone (either the protein backbone or deoxyribose sugar) were previously compared. Although preliminary energetic results indicated that the protein backbone strengthens, while the deoxyribose sugar either strengthens or weakens, the interaction calculated using truncated models, the reasons for these effects were unknown. The present work explains these observations by dissecting the interaction energy of the extended complexes into individual backbone···π and π···π components. Our calculations reveal that the total interaction energy of the extended complex can be predicted as a sum of the backbone···π and π···π components, which indicates that the biological backbone does not significantly affect the ring system through π-polarization. Instead, we find that the backbone can indirectly affect the magnitude of the π···π contribution by changing the relative ring orientations in extended dimers compared with truncated dimers. Furthermore, the strengths of the individual backbone···π contributions are determined to be significant (up to 18 kJ mol(-1)). Therefore, the origin of the energetic change upon model extension is found to result from a balance between an additional (attractive) backbone···π component and differences in the strength of the π···π interaction. In addition, to understand the effects of the biological backbone on the stacking interactions at DNA-protein interfaces in nature, we analyzed the stacking interactions found in select DNA-protein crystal structures, and verified that an additive approach can be used to examine the strength of these interactions in biological complexes. Interestingly, although the presence of attractive backbone···π contacts is qualitatively confirmed using the quantum theory of atoms in molecules (QTAIM), QTAIM electron density analysis is unable to quantitatively predict the additive relationship of these interactions. Most importantly, this work reveals that both the backbone···π and π···π components must be carefully considered to accurately determine the overall stability of DNA-protein assemblies.  相似文献   

19.
Two novel compounds 1-(5-[4-fluorophenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-2-thiocyanatoethanone (FSCN) and 1-(5-[4-chlorophenyl]-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)-2-thiocyanatoethanone (ClSCN) were synthesized and characterized by SC-XRD, 1H NMR, 13C NMR, FTIR, and UV methods. The X-ray diffraction studies were utilized to prove the 3D crystal structures of FSCN and ClSCN. In both the compounds, the packing is mostly driven by C H⋯N, C H⋯O, and C H⋯π (benzene ring as an acceptor) interactions. In ClSCN, additionally, the π⋯π interaction is observed between the pyrazole ring of one molecule and the benzene ring of the other molecule. The experimental values were compared with the results of DFT/B3LYP/6-311G++(d,p) theoretical computations. The pharmacological screening for FSCN and ClSCN was performed using molinspiration and PreADMET web server. To analyze antibacterial inhibition of the synthesized ligands and Ciprofloxacin (control drug) were interacted with antibacterial protein Thymidylate Kinase (TMK) (PDB ID: 4QGG) with the help of AutoDock Vina tool. The ADMET and docking results of FSCN and ClSCN pointed out the better drug likeness nature and good inhibition behavior with TMK protein. The antibacterial in vitro studies suggested that FSCN compound inhibited well with antibacterial strains than that of ClSCN. The current investigation suggests that with further improvements, our compounds could be preferred as substitute medicine for bacterial diseases.  相似文献   

20.
LI  Xin-Wei HE  Dao-Hang 《结构化学》2012,31(3):367-372
A novel compound,2-(anthracen-9-yl)-5-p-tolyl-1,3,4-oxadiazole(C23H16N2O),has been synthesized by the condensation of 4-methylbenzohydrazide and anthracene-9-carbaldehyde in an ethanol solution with chloramine-T.The compound was characterized by 1H-NMR,13C-NMR,MS and single-crystal X-ray diffraction.The crystal belongs to the triclinic system,space group P with a = 7.7817(4),b = 8.8544(5),c = 12.4726(8) ,β = 92.8520(10)°,Z = 2,V = 826.58(8) 3,Dc = 1.352 g/cm3,Mr = 336.38,λ(MoKα) = 0.71073 ,μ = 0.084 mm-1,F(000) = 352,R = 0.0381 and wR = 0.1099.The dihedral angle between anthracene skeleton and phenyl ring is 64.19°.A total of 6354 unique reflections were collected,of which 3172 with I > 2σ(I) were observed.X-ray analysis indicated an offset face-to-face π-π stacking interaction between anthracene skeletons and an offset face-to-face π-π stacking interaction between phenyl ring planes.The novel compound molecules are connected through the offset face-to-face π-π stacking interactions to generate a three-dimensional network.The preliminary bioassay results showed that the novel compound exhibited significant insect growth inhibitory activity against Spodoptera litura Fabricius larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号