首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The paper [20] attempts to solve a one dimensional model of the Zener type viscoelastic model (see Fig. 1 of the paper) replacing the classical time derivatives with a new fractional time derivative that was presented earlier by two of the authors (see ref. [1], [9] and [10] cited in the work). In addition, the authors present the classical solution of what is called in the paper “conventional viscoelastic model” and the solution due to Caputo fractional derivative, which is the solution of what the authors call “existing fractional order derivative viscoelastic models”. The paper seems to have several problems, typos and mistakes that will be discussed as follows  相似文献   

2.
In this paper, we present a new method, i.e. fractional Birkhoffian method, for stability of equilibrium positions of dynamical systems, in terms of Riesz derivatives, and study its applications. For an actual dynamical system, the fractional Birkhoffian method of constructing a fractional dynamical model is given, and then the seven criterions for fractional Birkhoffian method of equilibrium stability are established. As applications, by using the fractional Birkhoffian method, we construct four kinds of actual fractional dynamical models, which include a fractional Duffing oscillator model, a fractional Whittaker model, a fractional Emden model and a fractional Hojman–Urrutia model, and we explore the equilibrium stability of these models respectively. This work provides a general method for studying the equilibrium stability of an actual fractional dynamical system that is related to science and engineering.  相似文献   

3.
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 < α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative.  相似文献   

4.
A semi-analytic approach is proposed to analyze steady state responses of dynamic systems containing fractional derivatives. A major purpose is to efficiently combine the harmonic balancing (HB) technique and Yuan–Agrawal (YA) memory-free principle. As steady solutions being expressed by truncated Fourier series, a simple yet efficient way is suggested based on the YA principle to explicitly separate the Caputo fractional derivative as periodic and decaying non-periodic parts. Neglecting the decaying terms and applying HB procedures result into a set of algebraic equations in the Fourier coefficients. The linear algebraic equations are solved exactly for linear systems, and the non-linear ones are solved by Newton–Raphson plus arc-length continuation algorithm for non-linear problems. Both periodic and triple-periodic solutions obtained by the presented method are in excellent agreement with those by either predictor–corrector (PC) or YA method. Importantly, the presented method is capable of detecting both stable and unstable periodic solutions, whereas time-stepping integration techniques such as YA and PC can only track stable ones. Together with the Floquet theory, therefore, the presented method allows us to address the bifurcations in detail of the steady responses of fractional Duffing oscillator. Symmetry breakings and cyclic-fold bifurcations are found and discussed for both periodic and triple-periodic solutions.  相似文献   

5.
Fractional order models of a spring/spring-pot and spring/spring-pot/actuator element connected into a multibody system are proposed in order to represent smart materials and components in adaptronic systems by introducing new tuning parameter. The models are introduced into dynamic equations via generalized forces and using the Lagrange's equations of the second kind in covariant form. Generalized forces are derived by taking into account fractional order derivatives in force–displacement relations and by using the principle of virtual work. The numerical scheme for solving fractional order differential equations proposed in Atanacković and Stanković (2008) is used in order to approximate fractional order derivative of a composite function appearing in the presented fractional order model. Numerical example for the multibody system with three degrees of freedom is presented. The results obtained for generalized forces are compared for different values of parameters in the fractional order derivative model.  相似文献   

6.
Ordinary differential equations (ODEs) with fractional order derivatives are infinite dimensional systems and nonlocal in time: the history of the state variable is needed to calculate the instantaneous rate of change. This nonlocal nature leads to expensive long-time computations (O(t 2) computations for solution up to time t). A finite dimensional approximation of the fractional order derivative can alleviate this problem. We present one such approximation using a Galerkin projection. The original infinite dimensional system is replaced with an equivalent infinite dimensional system involving a partial differential equation (PDE). The Galerkin projection reduces the PDE to a finite system of ODEs. These ODEs can be solved cheaply (O(t) computations). The shape functions used for the Galerkin projection are important, and given attention. The approximation obtained is specific to the fractional order of the derivative; but can be used in any system with a derivative of that order. Calculations with both global shape functions as well as finite elements are presented. The discretization strategy is improved in a few steps until, finally, very good performance is obtained over a user-specifiable frequency range (not including zero). In particular, numerical examples are presented showing good performance for frequencies varying over more than 7 orders of magnitude. For any discretization held fixed, however, errors will be significant at sufficiently low or high frequencies. We discuss why such asymptotics may not significantly impact the engineering utility of the method.  相似文献   

7.
Approximating fractional derivatives in the perspective of system control   总被引:1,自引:0,他引:1  
The theory of fractional calculus goes back to the beginning of the theory of differential calculus, but its application received attention only recently. In the area of automatic control some work was developed, but the proposed algorithms are still in a research stage. This paper discusses a novel method, with two degrees of freedom, for the design of fractional discrete-time derivatives. The performance of several approximations of fractional derivatives is investigated in the perspective of nonlinear system control.  相似文献   

8.
The concept and application of phase-space reconstructions are reviewed. Fractional derivatives are then proposed for the purpose of reconstructing dynamics from a single observed time history. A procedure is presented in which the fractional derivatives of time series data are obtained in the frequency domain. The method is applied to the Lorenz system. The ability of the method to unfold the data is assessed by the method of global false nearest neighbors. The reconstructed data is used to compute recurrences and correlation dimensions. The reconstruction is compared to the commonly used method of delays in order to assess the choice of reconstruction parameters, and also the quality of results.  相似文献   

9.
Many constitutive models exist to characterise the cyclic behaviour of granular soils but can only simulate deformations for very limited cycles. Fractional derivatives have been regarded as one potential instrument for modelling memory-dependent phenomena. In this paper, the physical connection between the fractional derivative order and the fractal dimension of granular soils is investigated in detail.Then a modified elasto-plastic constitutive model is proposed for evaluating the long-term deformation of granular soils under cyclic loading by incorporating the concept of factional calculus. To describe the flow direction of granular soils under cyclic loading, a cyclic flow potential considering particle breakage is used. Test results of several types of granular soils are used to validate the model performance.  相似文献   

10.
The concept and application of phase-space reconstructions are reviewed. Fractional derivatives are then proposed for the purpose of reconstructing dynamics from a single observed time history. A procedure is presented in which the fractional derivatives of time series data are obtained in the frequency domain. The method is applied to the Lorenz system. The ability of the method to unfold the data is assessed by the method of global false nearest neighbors. The reconstructed data is used to compute recurrences and correlation dimensions. The reconstruction is compared to the commonly used method of delays in order to assess the choice of reconstruction parameters, and also the quality of results.  相似文献   

11.
Fractional order (or, shortly, fractional) derivatives are used in viscoelasticity since the late 1980s, and they grow more and more popular nowadays. However, their efficient numerical calculation is non-trivial, because, unlike integer-order derivatives, they require evaluation of history integrals in every time step. Several authors tried to overcome this difficulty, either by simplifying these integrals or by avoiding them. In this paper, the Adomian decomposition method is applied on a fractionally damped mechanical oscillator for a sine excitation, and the analytical solution of the problem is found. Also, a series expansion is derived which proves very efficient for calculations of transients of fractional vibration systems. Numerical examples are included.  相似文献   

12.
A four-parameter Maxwell model is formulated with fractional derivatives of different orders of the stress and strain using the Riemann-Liouville definition. This model is used to determine the relaxation and retardation functions. The relaxation function was found in the time domain with the help of a power law series; a direct solution was used in the Laplace domain. The solution can be presented as a product of a power law term and the Mittag-Leffler function. The retardation function is determined via Laplace transformation and is solely a power law type.The investigation of the relaxation function shows that it is strongly monotonic. This explains why the model with fractional derivatives is consistent with thermodynamic principles.This type of rheological constitutive equation shows fluid behavior only in the case of a fractional derivative of the stress and a first order derivative of the strain. In all other cases the viscosity does not reach a stationary value.In a comparison with other relaxation functions like the exponential function or the Kohlrausch-Williams-Watts function, the investigated model has no terminal relaxation time. The time parameter of the fractional Maxwell model is determined by the intersection point of the short- and long-rime asymptotes of the relaxation function.  相似文献   

13.
In this paper, the first-passage failure of stochastic dynamical systems with fractional derivative and power-form restoring force subjected to Gaussian white-noise excitation is investigated. With application of the stochastic averaging method of quasi-Hamiltonian system, the system energy process will converge weakly to an Itô differential equation. After that, Backward Kolmogorov (BK) equation associated with conditional reliability function and Generalized Pontryagin (GP) equation associated with statistical moments of first-passage time are constructed and solved. Particularly, the influence on reliability caused by the order of fractional derivative and the power of restoring force are also examined, respectively. Numerical results show that reliability function is decreased with respect to the time. Lower power of restoring force may lead the system to more unstable evolution and lead first passage easy to happen. Besides, more viscous material described by fractional derivative may have higher reliability. Moreover, the analytical results are all in good agreement with Monte-Carlo data.  相似文献   

14.
研究了含分数阶Caputo导数的非线性振动系统响应的数值计算方法。首先,由Caputo分数阶导数算子的叠加关系,得到含分数阶导数项非线性振动系统状态方程的标准形式。其次,基于Caputo导数与Riemann-Liouville导数和Grunwald-Letnikov导数间的关系,推导计算了Caputo导数的一般数值迭代格式。本文方法不要求状态方程中各分数阶导数阶数相等,弱化了已有算法中对分数阶导数阶数的限制,并可推广到多自由度的情形。随后,选择若干有解析解的算例验证了本文方法的正确性。最后,以多吸引子共存的分数阶Duffing振子系统为例,比较Caputo和GL两种算法所得结果,说明了用GL算法求解存在的问题。  相似文献   

15.
The smooth and discontinuous oscillator with fractional derivative damping under combined harmonic and random excitations is investigated in this paper. The short memory principle is introduced so that the evolution process of the oscillator with fractional derivative damping can be described by the Markov chain. Then the stochastic generalized cell mapping method is used to obtain the steady-state probability density functions of the response. The stochastic response and bifurcation of the oscillator with fractional derivative damping are discussed in detail. We found that both the smoothness parameter, the noise intensity, the amplitude and frequency of the harmonic force can induce the occurrence of stochastic P-bifurcation in the system. Monte Carlo simulation verifies the effectiveness of the method we adopt in the paper.  相似文献   

16.
Fractional conservation laws in optimal control theory   总被引:1,自引:0,他引:1  
Using the recent formulation of Noether’s theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler–Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum and the fractional derivative of the state variable. Partially presented at FDA ’06—2nd IFAC Workshop on Fractional Differentiation and its Applications, 19–21 July 2006, Porto, Portugal.  相似文献   

17.
In the paper, the dynamical behaviors of a new fractional order hyperchaotic Rabinovich system are investigated, which include its local stability, hyperchaos, chaotic control and synchronization. Firstly, a new fractional order hyperchaotic Rabinovich system with Caputo derivative is proposed. Then, the hyperchaotic attractors of the commensurate and incommensurate fractional order hyperchaotic Rabinovich system are found. After that, four linear feedback controllers are designed to stabilize this fractional order system Finally, by using the active control method the synchronization is studied between the fractional order hyperchaotic and chaos controlled Rabinovich system In addition, the theoretical predictions are confirmed by numerical simulations.  相似文献   

18.
Non-linear free damped vibrations of a rectangular plate described by three non-linear differential equations are considered when the plate is being under the conditions of the internal resonance one-to-one, and the internal additive or difference combinational resonances. Viscous properties of the system are described by the Riemann-Liouville fractional derivative of the order smaller than unit. The functions of the in-plane and out-of-plane displacements are determined in terms of eigenfunctions of linear vibrations with the further utilization of the method of multiple scales, in so doing the amplitude functions are expanded into power series in terms of the small parameter and depend on different time scales, but the fractional derivative is represented as a fractional power of the differentiation operator. It is assumed that the order of the damping coefficient depends on the character of the vibratory process and takes on the magnitude of the amplitudes’ order. The time-dependence of the amplitudes in the form of incomplete integrals of the first kind is obtained. Using the constructed solutions, the influence of viscosity on the energy exchange mechanism is analyzed which is intrinsic to free vibrations of different structures being under the conditions of the internal resonance. It is shown that each mode is characterized by its damping coefficient which is connected with the natural frequency of this mode by the exponential relationship with a negative fractional exponent. It is shown that viscosity may have a twofold effect on the system: a destabilizing influence producing unsteady energy exchange, and a stabilizing influence resulting in damping of the energy exchange mechanism.  相似文献   

19.
Lattice models with long-range interactions of power-law type are suggested as a new type of microscopic model for fractional non-local elasticity. Using the transform operation, we map the lattice equations into continuum equation with Riesz derivatives of non-integer orders. The continuum equations that are obtained from the lattice model describe fractional generalization of non-local elasticity models. Particular solutions and correspondent asymptotic of the fractional differential equations for displacement fields are suggested for the static case.  相似文献   

20.
A numerical method for fractional integral with applications   总被引:2,自引:0,他引:2  
IntroductionThefractionalcalculushasalonghistoryandthereareamassofworkstodiscussthefractionalderivativesandfractionalintegralswitharbitrary (realorcomplex)order[1- 3 ].Thefractionalcalculushasawideapplicationbackground ,especiallyinthefieldsofchemistry ,electromagnetics,materialscienceandmechanics.Forexample,Gement[4 ]proposedthefractionalderivativeconstitutivemodelsofaviscoelasticmaterialatfirst.Themodelshavereceivedincreasingattention[5 - 7].Onlyafewparametersarecontainedinthemodelsandthemo…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号