首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotope dilution mass spectrometry is an ideal analytical technique to measure the elemental abundance of Mo in C1 carbonaceous chondrites and the metallic and troilite phases of iron meteorites. The mean abundance of Mo in two C1 meteorites is 0.909+/-0.040 microg/g which corresponds to a value of 2.55 atoms Mo with respect to Si equal to 10(6) atoms, which is identical to the currently accepted solar system abundance. The partitioning of Mo between the metallic and sulfide phases in the Mundrabilla iron meteorite was found to be 6.0+/-0.2 microg/g and 8.6+/-0.3 microg/g, respectively. A new, precise Mo concentration of 1.54+/-0.04 microg/g for the Geochemical Reference Standard BCR-1 is also reported.  相似文献   

2.
Isotope dilution mass spectrometry is an ideal analytical technique to measure the elemental abundance of Mo in C1 carbonaceous chondrites and the metallic and troilite phases of iron meteorites. The mean abundance of Mo in two C1 meteorites is 0.909 ± 0.040 μg/g which corresponds to a value of 2.55 atoms Mo with respect to Si equal to 106 atoms, which is identical to the currently accepted solar system abundance. The partitioning of Mo between the metallic and sulfide phases in the Mundrabilla iron meteorite was found to be 6.0 ± 0.2 μg/g and 8.6 ± 0.3 μg/g, respectively. A new, precise Mo concentration of 1.54 ± 0.04 μg/g for the Geochemical Reference Standard BCR-1 is also reported. Received: 15 December 1999 / Revised: 13 March 2000 / Accepted: 16 March 2000  相似文献   

3.
Qu W  Du A  Zhao D 《Talanta》2001,55(4):815-820
The article describes a method for the determination of (187)Os in molybdenite by isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) with neutron-induced (186)Os and (188)Os spike. The spike used in the present work was prepared in line with the principle by which artificial nuclides are produced in a nuclear reaction. The concentration and isotopic composition of osmium in the prepared spike were evaluated accurately with the isotope dilution method, using negative thermal ion mass spectrometry (N-TIMS). The advantage of this method is that using (186)Os and (188)Os double spikes can effectively compensate for the mass discrimination effects of ICP-MS. Thus, the common correction practice for mass bias in the isotope dilution method with a single spike is unnecessary. In addition, the method enables one to reduce the determined error arising from instrumental instability. The precision for the (187)Os/((186)Os+(188)Os) ratio was approximately 2% (2sigma, RSD), but in the case of (187)Os/(186)Os, (187)Os/(188)Os and (186)Os/(188)Os, precision ranged from 2.0 to 8% (2sigma, RSD). The results for (187)Os concentration in a molybdenite sample determined with this method showed good agreement with reference values.  相似文献   

4.
A method for the determination of low Ru, Pd, Re, Os, Ir and Pt abundances in geological reference materials by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion in a high pressure asher (HPA-S) is presented. The digestion technique is similar to that using Carius tubes but easier to handle and reaches higher temperatures. Osmium can be determined as OsO4 with ICP-MS directly after digestion through a sparging technique. The remaining elements are preconcentrated by means of anion column chromatography. The resin is digested directly without elution leading to high yields but this causes problems if Zr is present at higher levels in the silicate rich materials. The analytical results for international platinum group element (PGE) reference materials, chromitite CHR-Bkg, basalt TDB-1 and gabbro WGB-1, are presented and compared with literature data, demonstrating the validity of the described method. Although higher in concentration, PGEs determined for reference material WGB-1 were worse than for TDB-1 indicating a more inhomogeneous distribution of the platinum group mineral phases. The low PGE abundance chromitite standard, CHR-Bkg, is likely to be homogeneous for Ru, Re, Os and Ir and is recommended as a reference material for the study of chromitites. Detection limits (3s x total procedure blank) range from 0.012 ng (Re and Os) to 0.77 ng (Pt), which could be further improved by applying higher quality acids.  相似文献   

5.
An analytical method was developed for Os-Re dating of molybdenite. The method is based on determination of Os and Re concentrations in molybdenite by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS). Sample digestion and sample/spike equilibration were achieved by a two-stage autoclave-based procedure using a mixture of nitric and sulphuric acids. Os was separated from the sample digest by modified single-stage distillation of osmium tetraoxide (OsO4) using elevated temperature and on-line addition of hydrogen peroxide. OsO4(g) was trapped in a mixture of 0.05% thiourea in 0.05 M sodium hydroxide. An anion-exchange column was used to separate Re from excess Mo in the solution remaining after distillation. Os and Re isotope ratio measurements were performed by single-collector, double focusing inductively-coupled plasma mass spectrometry (ICP-MS) with on-line mass-bias correction. Typical instrumental precision was in the range 0.02-0.2% relative standard deviation (R.S.D.) depending on the analyte concentrations. Notorious Os memory effects in the ICP-MS introduction system were eliminated using 5% ammonia solution, both as matrix for final dilution of the trap mixture as well as for washing between the samples. The reproducibility of the entire analytical procedure was accessed by replicate dating of two molybdenite standards and three molybdenite separates, and was found to be in the range 0.87-1.52% R.S.D. Though accuracy of the method is limited by difficulties in evaluating exact concentration of Os in spike solution, ages obtained in the course of these work agrees well with previously published data.  相似文献   

6.
A method is proposed for determining platinum-group elements, Ru, Pd, Os, Ir, Pt, and Re in geological samples by isotope dilution with mass spectrometric ending after sample decomposition with a mixture (1: 3) of conc. HCl + HNO3 in a microwave system and the chromatographic separation of the analytes from the matrix on an AG 50W × 8 cation exchanger. The concentrations and isotope ratios are determined on high-resolution mass spectrometers ELEMENT and ELEMENT2. The attained detection limits range from 0.005 ng/g (Ir) to 0.2 ng/g (Pd) in solid samples. The use of isotope dilution improves the accuracy of determination and takes into account the matrix effect and changes in plasma parameters on the analytical signal. The method is tested in the analysis of standard samples of spinel lherzolite (GP-13) and serpentinite (UB-N). The relative standard deviation of the results of analysis is 5–22%, depending on the element and its concentration level (Ru, Pd, Re, Pt). In determining Os and Ir, a certain decrease in the accuracy and repeatability of the results is noticed.  相似文献   

7.
An instrumental neutron activation analysis procedure has been developed which permits the direct determination of Au, Ir, Os and Rh in iron meteorites using a SLOWPOKE reactor. A simple correction method enables the instrumental determination of rhodium using its short-lived nuclide.  相似文献   

8.
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP–MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP–MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP–MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.  相似文献   

9.
A method is described for the determination of lithium in rocks by the method of stable isotope dilution. 50 mg to 500 mg of the sample are used for each determination. The sample is mixed with a known quantity of enriched lithium and is then decomposed by a mixture of hydrofluoric and perchloric acids. The separation of the alkali metals from iron and aluminium is based on the thermal decomposition of the perchlorates. For mass spectrometric measurements it is not necessary to separate the lithium from the other alkali metals.The values obtained for the lithium contents of two standard rocks are: G-I, 21.3 p.p. m. ; W-I, 12.6 p.p.m. Independent determinations, made using both lithium 6 and lithium 7 as tracers, have established that no significant systematic errors are caused by isotopic fractionation.Results obtained for two clay samples containing 0.1–0.3% of lithium show good agreement with spectrographic values.  相似文献   

10.
A procedure for the determination of ruthenium in iron meteorites involves its oxidation to RuO4 by sodium periodate in hydrochloric acid and extraction of the tetroxide into chloroform. Various parameters of the method were studied: sample dissolution, optimum amount of oxidant, shaking time, distribution ratio and stability of the complex. The relative standard deviation assessed from replicate analyses of the North Chile iron meteorite was 6.6%. There are no certified standards for iron meteorites, but the value of 20.0 μg g? obtained for this meteorite compares well with a reported abundance of 19.3 μg g?1 obtained by radiometric neutron-activation analysis (RNAA). The analysis of 15 meteorites that had previously been analysed by RNAA gave values averaging 11% below those reported by the latter method, but within the standard deviation of the RNAA data. It is considered that the present method is a more practical alternative to RNAA for the determination of ruthenium in iron meteorites.  相似文献   

11.
A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater. Pre-concentration and salt-separation of a stable isotope spiked sample are achieved by single batch extraction onto nitrilotriacetate (NTA)-type Superflow(?) chelating resin beads (100-2400 beads depending on the element). Metals are released into 0.1-0.5 M HNO(3), and trace metal isotope ratios are determined by ICPMS. The benefit of this method compared to our previous Mg(OH)(2) coprecipitation method is that the final matrix is very dilute so cone-clogging and matrix sensitivity suppression are minimal, while still retaining the high accuracy of the isotope dilution technique. Recovery efficiencies are sensitive to sample pH, number of resin beads added, and the length of time allowed for sample-resin binding and elution; these factors are optimized for each element to yield the highest recovery. The method has a low procedural blank and high sensitivity sufficient for the analysis of pM-nM open-ocean trace metal concentrations. Application of this method to samples from the Bermuda Atlantic Time-Series Study station provides oceanographically consistent Cu, Cd, Pb, and Fe profiles that are in good agreement with other reliable data for this site. In addition, the method can potentially be modified for the simultaneous analysis of multiple elements, which will be beneficial for the analysis of large number of samples.  相似文献   

12.
Simple and effective procedures for the determination of Re, Os and Ir by radiochemical neutron activation analysis are presented. Those elements are separated individually by distillation (for Os) and anion exchange techniques (for Re and Ir) for a single specimen. Reproducibilities of the data obtained by the present procedures are evaluated by replicate analyses of the Allende meteorite sample, and are deduced to be 3% for Re, 6% for Os and 4% for Ir (1). Detection limits for the present procedures are calculated to be 1 ppb for Re, 20 ppb for Os and 5 ppb for Ir. These procedures were applied to Antarctic meteorites and proved to work very effectively for the determination of trace Re, Os and Ir in chondrite meteorites.  相似文献   

13.
A thermal neutron activation analysis technique has been developed for the analysis of terrestrial rocks and stony meteorites for trace elements. The main emphasis of the method is directed toward minimizing chemical procedures and maximizing the use of Ge(Li) gamma spectroscopy and computer data reduction. The validity of the technique is demonstrated by presenting data obtained for synthetic samples, U.S G.S. Standard Rocks and three ordinary chondrite meteorites for the following elements: As, Au, Co, Cs, Ga, Ge, Hg, Mo, Os, Re, Sb, Sc, Se, Te and Zn. Submitted in partial fulfillment of the requirements for the Ph. D. degree in the Department of Chemistry, Purdue University.  相似文献   

14.
An analytical method for trace levels of iron in a seawater sample using isotope dilution ICP-MS was developed. Preconcentration of iron and the removal of major elements in seawater such as alkali and alkaline-earth elements can be carried out quickly using a chelating resin disk by adjusting the sample pH to 3. The collision cell option of the ICP-MS instrument method was used to improve the performance of the instrument for iron measurements since ArO and ArN interferences could be reduced using this analytical method. About 4 ml min(-1) helium, as the collision gas, were introduced into the cell. 40Ar14N and 40Ar16O which interfere with 54Fe and 56Fe in water had their amounts decreased by 5 orders of magnitude. Then, the isotope dilution method was used for iron determination below ng g(-1) level of trace iron in four environmental reference materials (river water standard sample JAC-0031 (Japan Soc. for Analytical Chemistry), estuarine standard sample SLEW-2 (NRC Canada) and seawater standard samples CASS-3 and NASS-5 (NRC Canada)) were measured. Good agreement between analytical results and certified values of reference materials was obtained, which confirmed the effectiveness of this method.  相似文献   

15.
The determination of Zn, Sr, Ba, and Pb in solid samples has been achieved by laser ablation inductively coupled plasma isotope dilution mass spectrometry using a spinning platform. The fast rotation of a sample and an isotopically enriched spike placed close together on a sample holder allowed performing the isotope dilution directly inside the ablation cell. The proportion of spike versus sample of the aerosol mixture obtained has been determined online by isotope dilution in order to correct for differences in ablation rate although both materials were placed on the axis of rotation of the motor. Homogeneous, time-stable, and reusable samples were prepared by lithium borate fusion. A unique isotopically enriched spike glass was used to analyze four Standard Reference Materials of different matrix (after a simple polishing): two sediments Standard Reference Material (SRM) 1944 and SRM 2702 and two soils SRM 2586 and SRM 2711a. The proposed method yielded mass fractions with a deviation from the certified value usually lower than 12 % and a precision of less than 9 % RSD (except for Zn in SRM 2586 and 2711a). Although direct spiking of the solid before fusion could presumably provide better isotopic mixing, the presented methodology allows the reuse of the spike glass (thus, decreasing drastically the cost of the analysis) and is relatively faster because the spike does not need to be weighted, added, and evaporated each time. These results demonstrate the potential of this newly developed method for fast analysis of solid samples using isotope dilution at a low cost.  相似文献   

16.
屈文俊  杜安道  任静 《分析化学》2008,36(2):223-226
对黄铁矿在高温高压密闭的Carius管溶解过程中出现的黄色沉淀物进行了定性研究。在黄铁矿中加入少量的辉钼矿及185Re和190Os混合稀释剂,在常规的逆王水溶矿过程中加入适量H2O2,用ICP-MS检测,研究了H2O2对Re、Os信号强度变化及同位素交换平衡产生的影响。结果表明,在黄铁矿溶解过程中出现的黄色沉淀物为羟基硫酸铁(FeOHSO4)而不是单质硫,它是由于密闭的Carius管内氧化性不够而生成的。H2O2的加入对ICP-MS测定Re信号强度没有影响,而对Os则有显著的改善,但这种改善并未影响到加入的185Re和190Os稀释剂与样品中的Re和Os达到同位素交换平衡,因而也不影响到样品的Re、Os含量及最终的Re-Os同位素年龄计算。  相似文献   

17.
A flame photometric method for the determination of potassium (0.005 0.1%) and sodium (0.01 1.0%) in stony meteorites and other silicate materials is described using a Beckman Model DU flame photometer. A simple scanning procedure eliminated background radiation and a small correction for the effect of magesium on potassium radiation was calculated. Results obtained by this procedure agree well with an evaporative technique and isotope dilution determinations.  相似文献   

18.
Fractional iron absorption from a breakfast meal was determined in Peruvian children employing stable iron isotopes as labels. Iron isotopic analysis was performed by the recently developed negative thermal ionization technique for high-precision iron isotope ratio measurements using FeF4 ions. By increasing the ascorbic acid content of the standard breakfast meal as served within the Peruvian school-breakfast program from 27 mg to 70 mg, it was possible to increase the geometric mean fractional iron absorption significantly from 5.1% (range 1.6–13.5%) to 8.2% (range 3.1–25.8%). Fractional iron absorption was calculated according to isotope dilution principles and by considering the non-monoisotopic character of the used spikes.  相似文献   

19.

Rationale

Elemental abundances and isotopic ratios of carbon, nitrogen, sulfur and hydrogen have become important tools for reconstructing the evolution of Earth and life over geologic timescales, requiring accurate and precise analytical methods with high sample throughput. However, these measurements may require separate instruments for each task, such as an elemental analyzer (EA) with a thermal conductivity detector (TCD) for elemental abundances and an EA interfaced with a mass spectrometer for isotopic ratios.

Methods

To improve sample throughput and laboratory up-time, we developed a switch that allows converting an EA IsoLink™ system from a standalone mode using only a TCD to a mode for isotope ratio mass spectrometry (IRMS) within minutes. This permits accurate measurements of elemental abundances and isotopic ratios with high throughput and lower cost. We validated this method with six shale standards from the US Geological Survey (USGS) and compared our abundance data with those from another laboratory.

Results

Our results show that (a) abundance data agree well between the different laboratories and setups; (b) reproducible isotopic data can be obtained before and after the switch-over from EA standalone mode; and (c) the USGS rock standards cover a wide range in CHNS abundances and CNS isotopes, making them ideal reference materials for future geochemical studies.

Conclusions

This ideal analytical setup has the advantage that abundance measurements can be performed to determine optimal sample amounts for later isotopic analyses, ensuring higher data quality. Our setup eliminates the need for a separate EA while freeing up the mass spectrometer for other tasks during abundance measurements.
  相似文献   

20.
采用同位素稀释法结合固相萃取净化,建立了海产品中苯并(α)芘残留的气相色谱串联质谱(6C—MS/MS)检测方法。样品经乙腈一丙酮(体积比6:4)溶液提取,硅胶固相萃取净化,苯并(μ)芘用GC—MS/MS测定,同位素D12-苯并芘内标法定量。方法的平均回收率为93%-98%,相对标准偏差为6.2%~12.2%(n=6),定量限为0.2μg/kg。用该方法测定FAPAS烟熏鱼有证标准样品,测定值与标准值一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号