首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sulfathiazole-based novel hydrogel sorbents P(Sulti/hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc)) were prepared by UV irradiation and used for the removal of mercury(II) ion from aqueous media. Hydrogels have been characterized by SEM and thermogravimetric analysis (TGA) techniques. The influence of the uptake conditions was investigated; maximum Hg(II) ion adsorption capacity obtained was 13.46±1.15 mg g−1 at pH 5.0. The hydrogels were tested several times without loss of adsorption capacity. The selectivity of the hydrogel towards to Hg(II), Cd(II) and Zn(II) ions tested was Hg>Cd>Zn.  相似文献   

2.
The copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were synthesized by gamma radiation induced radical polymerization. Swelling and thermodynamic properties of PHEMA and copolymeric P(HEMA/IA) hydrogels with different IA contents (2, 3.5 and 5 mol%) were studied in a wide pH and temperature range. Initial studies of so-prepared hydrogels show interesting pH and temperature sensitivity in swelling and drug release behavior. Special attention was devoted to temperature investigations around physiological temperature (37 °C), where small changes in temperature significantly influence swelling and drug release of these hydrogels. Due to maximum swelling of hydrogels around 40 °C, the P(HEMA/IA) hydrogel containing 5 mol% of IA without and with drug-antibiotic (gentamicin) were investigated at pH 7.40 and in the temperature range 25–42 °C, in order to evaluate their potential for medical applications.  相似文献   

3.
《Comptes Rendus Chimie》2015,18(1):88-99
The performance of a microporous activated carbon prepared chemically from olive stones for removing Cu(II), Cd(II) and Pb(II) from single and binary aqueous solutions was investigated via the batch technique. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, XRD, FTIR, and Boehm titration. The effect of initial pH and contact time were studied. Adsorption kinetic rates were found to be fast and kinetic experimental data fitted very well the pseudo-second-order equation. The adsorption isotherms fit the Redlich–Peterson model very well and maximum adsorption amounts of single metal ions solutions follow the trend Pb(II) > Cd(II) > Cu(II). The adsorption behavior of binary solution systems shows a relatively high affinity to Cu(II) at the activated carbon surface of the mixture with Cd(II) or Pb(II). An antagonistic competitive adsorption phenomenon was observed. Desorption experiments indicated that about 59.5% of Cu(II) and 23% of Cd(II) were desorbed using a diluted sulfuric acid solution.  相似文献   

4.
Cd(OH)2 nanowires (NWs) were successfully prepared by room temperature electrogeneration of base using Cd(NO3)2 aqueous electrolyte and Anodic Alumina Membrane (AAM) as template. Cd(OH)2 films have been also deposited on tin-doped indium oxide (ITO) for comparison. SEM analysis shows high quality deposits made of closely packed nanowires (NWs) into AAM and uniform flake-like surface on ITO. XRD analysis reveals that Cd(OH)2 films on ITO are polycrystalline, while the nanowires grow along the preferential directions [1 0 0] and [1 1 0]. Photoelectrochemical measurements show that Cd(OH)2 NWs are photoactive materials with indirect and direct band gap of 2.15 and 2.75 eV, respectively.  相似文献   

5.
In order to provide information on the chemical processes in sediment fractions and their adsorption models, we investigated the contaminated sediments of the Sumida River in Tokyo, Japan and the Chao Phraya River in Bangkok, Thailand. Samples were leached through a sequential leaching technique to perform metal concentration analysis for the sediment fraction assessment and then samples were tested for the model adsorption of the highest level of sediments contaminated by heavy metals using the isotherm Langmuir and Freundlich equations. Metal (Pb, Cd, Zn, As, Cu, Ca, Fe, and Mn) concentration in the leached solutions was analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The pattern of geochemical fractions in both sediment samples showed the maxima leached levels of Cd (38.6 %), Ca (55.2%), and Mn (41.3%) in the soluble fraction; Pb (52.1%), and Zn (56.7%) in the reducible fraction; Cu (61.2%) in the oxidizable fraction; and As (47.1%) and Fe (55.9%) in the residual fraction. The total level fractions of Pb (62.6 ppm), Zn (240 ppm), As (27.2 ppm), Fe (16,636 ppm) and Mn (419 ppm) in the Chao Phraya River sediments were higher compared to those in the Sumida River, indicating the high anthropogenic effect in Bangkok. In the most contaminated sediments, the higher adsorption capacity of heavy metal concentrations was contributed by SiO2, CaCO3, and Al2O3 determined by the X-ray diffraction and organic contents. The model of adsorption of Cd fitted to the linear form of Langmuir’s equation with the correlation coefficients (r2 = 0.94), b (0.467) and k (7137), whereas Pb, Cu, Cr, and Zn conformed to the model of the Freundlich equation.  相似文献   

6.
The extraction and transport of Cd(II) and Pb(II) in two different membrane systems (SLM and PIM) using Kelex 100 as carrier was studied, proposing the corresponding chemical models of transport. A two-species transport model is proposed for Cd(II), according to solvent extraction (SX) data. Experimental SLM permeabilities are 9.7×10−5 m s−1, while measured PIM permeabilities are 5×10−5 m s−1. Values for the aqueous boundary layer thickness and for the diffusion coefficient of the metal cation-carrier complexes in the membrane phase were calculated from numerical fitting of experimental data using the proposed transport models. A highly selective Pb(II) separation was achieved in PIM systems based on the nature of the chemical equilibria involved in Cd(II) and Pb(II) membrane transport.  相似文献   

7.
Hydrogels based on acrylamide monomer (AM) and different ratios (5–20 wt%) of carboxymethyl cellulose (CMC) were synthesized by gamma irradiation. The hydrogels were characterized in terms of gel content, swelling and drug release characters. The effect of temperature and pH on the degree of swelling was also studied. The results showed that the gel fraction of AM/CMC hydrogels decreases greatly with increasing the contents of CMC in the initial feeding solution. The kinetic study showed that the swelling of all the hydrogels tends to reach the equilibrium state after 5 h. However, the swelling of AM/CMC hydrogels was greater than the hydrogel based on pure AM. On the other hand, it was found that the swelling of all the hydrogels changes within the temperature range 30–40 °C and within the pH range 4–8. The AM/CMC hydrogels was evaluated for the possible use in drug delivery systems. In this respect, the release properties of methylene blue indicator, as a drug model, was investigated. It was found that the percentage release from the hydrogels increase with time to reach ~80% after 3 h at pH of 2 compared to ~100% at pH of 8.  相似文献   

8.
The effects of pH of the buffer solution and the composition of the hydrogel system on the bovine serum albumin (BSA) adsorption capacity of chitosan (CS)–polyvinyl pyrrolidone (PVP) (CSPVP) hydrogels and release of BSA were investigated. Poly-electrolyte CSPVP hydrogels with different compositions were prepared by irradiating CS/PVP/water mixtures with γ-rays at ambient temperature. The adsorption capacity of hydrogels was found to increase from 0 to 350 mg BSA/g dry gel, by changing external stimuli and hydrogel composition. The adsorption of BSA within CSPVP hydrogels increased with increase in CS content in the hydrogels. When the irradiation doses of hydrogel increased, the adsorption of BSA decreased. The maximum adsorption of BSA was observed at pH 5. A significant amount of the adsorbed BSA (up to 95%) was eluted in the phosphate medium containing 0.1 M NaCl at pH 7.4.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) were used successfully for the removal of heavy metals from aqueous solution. Characterization techniques showed the carbon as nanotubes with an average diameter between 40 and 60 nm and a specific surface area of 61.5 m2 g?1. The effect of carbon nanotubes mass, contact time, metal ions concentration, solution pH, and ionic strength on the adsorption of Cu(II), Pb(II), Cd(II) and Zn(II) by MWCNTs were studied and optimized. The adsorption of the heavy metals from aqueous solution by MWCNTs was studied kinetically using different kinetic models. A pseudo-second order model and the Elovich model were found to be in good agreement with the experimental data. The mechanism of adsorption was studied by the intra-particle diffusion model, and the results showed that intra-particle diffusion was not the slowest of the rate processes that determined the overall order. This model also revealed that the interaction of the metal ions with the MWCNTs surface might have been the most significant rate process. There was a competition among the metal ions for binding of the active sites present on the MWCNTs surface with affinity in the following order: Cu(II) > Zn(II) > Pb(II) > Cd(II).  相似文献   

10.
A thermoresponsive hydrogel was synthesized by radiation copolymerization of ethylene glycol vinyl ether (EGVE) and butyl vinyl ether (BVE) in the presence of cross-linking agent diethylene glycol divinyl ether. The gel was modified by a cell adhesion factor RGD by photochemical immobilization technique. While the unmodified hydrogel shows fully hydrated form at low temperatures (+4 °C) and it extensively dehydrates at 37 °C, the biomodified hydrogel still kept its thermoresponsive character after immobilization. The effectiveness of immobilization was checked with FTIR-ATR and XPS. The use of bioactive thermoresponsive hydrogels in cell culture applications was investigated. For this purpose, cell culture experiments were realized by L929 mouse fibroblasts. Cell attachment experiments revealed the effect of immobilized RGD with higher values of cell attachment (∼85%), which were obtained especially in the absence of serum. The thermoresponsive character of the hydrogel was useful for the application of low-temperature treatment in order to recover the attached viable cells from the surface of the hydrogel without using trypsin. When the culture temperature was decreased from 37 to 10 °C for 30 min ∼80% of the cells were detached from the hydrogel surface.  相似文献   

11.
《Comptes Rendus Chimie》2014,17(7-8):849-859
Polyacrylamide (PAAm) was chemically modified with hydroquinone (HQ) via a homolytic route. A degree of modification of approximately 58% was obtained under optimal reaction conditions: time of 6 h, and [modifier]/[acrylamide] molar ratio of 5. PAAm and its modified form HQ–PAAm were characterized by UV–visible spectroscopy, FT–IR spectroscopy, 13C NMR spectroscopy, DSC, TGA, XRD, and SEM. A relatively lower molecular weight of the corresponding hydroquinone-functionalized form was measured. The glass transition temperature of the modified polymeric material was lower than that of the pristine one: 78.82 °C for HQ–PAAm versus 161.19 °C for PAAm. A study of Cu(II) adsorption by the cross-linked PAAm and HQ–PAAm resins was conducted by varying the following parameters: pH, time, temperature, ionic strength, sorbent mass, and initial Cu(II) concentration. The adsorption capacity of Pb(II) and Cd(II) by the different resins and their corresponding extents of desorption were estimated. The optimal conditions for metal ion uptake by polyacrylamide and its modified resin were: pH = 5.4, time = 120 min, temperature = 45 °C. The sorption extent by the modified resin was in the order Pb(II) > Cu(II) > Cd(II). The desorption of the experimented metallic ions from the resins exceeded 97%. A new way of cross-linking PAAm and its modified form is described herein.  相似文献   

12.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

13.
A simple and fast method based on graphite furnace atomic absorption spectrometry (GF AAS) and slurry sampling technique (SlS) was developed to determine trace Cd, Co and Pb in high-sulphur coal (Sulcis, Italy) and coal chars derived at 600, 750 and 950 °C under N2 atmosphere for developing a clean coal for electricity production. The proposed method was then coupled to a four-step sequential chemical extraction method for assessment of metals distribution in coaled samples. The slurries were prepared by varying sample mass (1–50 mg), volume (1–3 mL) and kind of dispersing medium (1% v/v Triton X-100 and 2 N HNO3), and sonication time (5–30 min). Pyrolysis/atomization temperatures as well carrier gas flow rate were optimised. Pd(NO3)2 and NH4H2PO4 were employed to stabilize Cd and Pb, respectively, in the pyrolysis stage of furnace program. The use of HNO3 as dispersing agent was found to be effective in lowering the high level of background absorption on the Cd analytical signal produced by raw coal matrix. Conversely, coal charred samples did not show significantly level of background interferences, so that Triton X-100 dispersing agent could be used for all analytes. Calibration curve against acid-matched standards was allowed for Cd, whereas the standard addition calibration was used for Co and Pb owing to chemical matrix interferences. The precision, expressed as relative standard deviation (% RSD, n = 5), was better than 5% for Cd, Co, and Pb at 1, 10, and 15 μg L? 1 levels, respectively. The accuracy of the analytical method was checked by analyzing a BCR No. 182 steam coal certificated reference material and the results were in good agreement with certificated and informed values. The solid detection limits (3σblank) were as low as 0.001 Cd, 0.01 Co, and 0.01 Pb mg kg? 1, using 30 mg sample mass and slurry concentration of 30 m v? 1 for Cd, and 50 mg sample mass and 50 m v? 1 slurry concentration for Co and Pb. The content of elements in Sulcis coal was found to be 0.33 Cd, 4.0 Co, and 3.8 Pb mg kg? 1 and mostly associated to sulphates and di-sulphides as indicated by the leaching test. Under pyrolysis conditions Cd significantly volatilised (about 64%) at temperature higher than 600 °C, whereas residue chars at 950 °C are enriched in Co and Pb up to 20%. The proposed method is suitable for routine metals monitoring in coaled samples.  相似文献   

14.
A new simple method for the spectrophotometric determination of Pb(II) in fly ash leachates was developed. These leachates tend to contain a large amount of Ca(II) and Zn(II); this interferes with spectrophotometric determination of Pb(II) when conventional colorimetric agents are used. A copolymer consisting of protoporphyrin IX disodium salt and acrylamide was synthesized as a colorimetric agent. A measuring reagent containing ethylenediamine-N,N′-dipropionic acid (EDDP) as a masking agent for Zn(II) and an appropriate amount of Ca(II) together with the copolymer was applied to determine Pb(II). The temporal change in the absorption spectrum of the measuring reagent was acquired with a newly developed portable spectrophotometer for this method. The composition of EDDP and Ca(II) in the measuring reagent was optimized to measure leachates contaminated with Ca(II) and Zn(II). The detection limit and relative standard deviation of Pb(II) measured using the optimized method were 0.05 mg L?1 and 2.3%, respectively. The tolerance limits for Ca(II) and Zn(II) contaminants, where errors of less than 10% were allowed at a concentration of 0.5 mg L?1 Pb(II), were 4000 and 4 mg L?1, respectively. The determination of Pb(II) in various samples of actual leachates from incinerator fly ash was examined with this method. The obtained values correlated well with those obtained by flame atomic absorption spectroscopy.  相似文献   

15.
《Microchemical Journal》2007,85(1-2):80-87
Poly((N-(Hydroxymethyl)methacrylamide)–1-allyl-2-thiourea) hydrogels, Poly(NHMMA–ATU), were synthesized by gamma radiation using 60Co γ source at different irradiation doses and different ATU content in the irradiated monomer mixture. The swellability of the synthesized hydrogels was changed by irradiation doses and by the content of ATU in the irradiated mixture. These hydrogels were used for the specific gold recovery and pre-concentration from single gold ion solutions and from different natural samples. It has been observed that gold adsorption capacity onto the hydrogels was high at low pHs and reached maximum value at pH = 0.5. Adsorption capacity of the hydrogels for gold at pH = 0.5 was found to be about 698 mg g 1 dry hydrogels. Adsorption equilibrium time of gold ions onto the hydrogels was found to be very short and also these hydrogels were showed extremely high selectivity to the gold ions in acidic media when the concentration of the other metal ions were extremely higher than gold. Because of the high specificity of these hydrogels to gold beside the other metal ions at low pHs, all matrix effects were easily eliminated adsorbing gold onto the hydrogels and desorbing into 3 M HCl solution containing 0.8 M thiourea. These hydrogels were found to be highly open pore size. This property of the hydrogels make them attractive due to high adsorption capacity of gold ions on/in the hydrogels penetrating inside and react to all functional groups in the interior surface of the hydrogels.  相似文献   

16.
The effect of gel composition, absorbed dose and pH of the solution on the uranyl ion uptake capacity of N-isopropylacrylamide/maleic acid copolymeric hydrogels containing 0–3 mol% of maleic acid at 48 kGy have been investigated. Uranyl uptake capacity of hydrogels are found to increase from 18.5 to 94.8 mg [UO22+]/g dry gel as the mole % of maleic acid content in the gel structure increased from 0 to 3. The percent swelling, equilibrium swelling and diffusion coefficient values have been evaluated for poly(N-isopropylacrylamide/maleic acid) hydrogels at 500 ppm of uranyl nitrate solution.  相似文献   

17.
Poly(N,N-dimethylamino ethylmethacrylate) [P(DMAEMA)] hydrogels were prepared by irradiating the ternary mixtures of dimethylamino ethylmethacrylate (DMAEMA)/ethyleneglycol dimethacrylate (EGDMA)/water (H2O) by γ-rays at ambient temperature. The swelling of four types of DMAEMA hydrogels in distilled water is higher than the swelling of these hydrogels in dye solutions. The value of equilibrium swelling of P(DMAEMA)1 hydrogel was 338% at pH 7.0 in distilled water, while it was 325% and 326% at pH 7.0 in Apollofix Red (AR) and Apollofix Yellow (AY) solutions, respectively. The adsorption capacity of P(DMAEMA)1 hydrogel was found to increase from 85 to 131 mg for AR g−1 dry gel and from 58 to 111 mg for AY g−1 dry gel with decreasing pH of the dye solutions.  相似文献   

18.
The present study is based on the measurement of selected metals (Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Pb, Sr and Zn) in the fruits of eight medicinal plants (Carrisa opeca, Phyllanthus emblica, Solanum nigrum, Zizyphus nummularia, Zizyphus mauritiana, Physalis minima, Opuntia dillenii and Phoenix dactylifera) and relevant soil samples by atomic absorption spectrometry. Highest average concentrations of Cu (14.4 mg/kg), Cr (19.0 mg/kg), and Zn (125 mg/kg) were found in the fruits of P. minima, C. opeca and Z. nummularia, respectively, while O. dillenii showed the elevated mean levels of Cd (3.49 mg/kg), Sr (61.4 mg/kg), Mg (0.21%), Ca (6.62%) and Mn (44.6 mg/kg). However, highest average levels of Pb (41.7 mg/kg) and Co (38.4 mg/kg) were found in Z. mauritiana. Overall, most of the fruit samples showed higher contributions of Ca and Mg, followed by Fe, Zn, Co and Pb. In the case of soil samples, highest concentration was observed for Ca, followed by Fe, Mg, Mn and Sr, while lowest concentration was shown by Cd. Bioaccumulation factors exhibited significantly higher accumulation of Co (0.813–1.829) and Pb (0.060–2.350) from the soil to the fruits. Principal component analysis revealed significant anthropogenic contributions of Pb, Fe and Co in the fruit samples. Contamination factors and enrichment factors of Cd and Pb in the soil indicated very high contamination and extreme enrichment of these metals.  相似文献   

19.
The use of cyclic voltammetry (CV) and linear scan anodic stripping voltammetry (LSASV) to predict the selectivity of microfiltration ceramic membranes made from a lump of local clay towards Pb(II) ions filtration is described. The membranes were characterized by different techniques followed by CV analysis of the Fe(CN)63-/Fe(CN)64- redox couple and Pb(II) on bare graphite, raw clay, and clay-modified carbon paste electrode (clay-modified CPE). The effect of clay loading in the range of 1–10 % (w/w) on the electrodes is studied, where an enhanced peak current is observed for 5 % w/w clay. Moreover, a decrease in the peak current can be seen for bare graphite electrodes, suggesting that the clay mineral had played a substantial role in the sieving of heavy metal ions through the ceramic membrane. The electroactive surface area of 5% w/w raw clay towards Fe(II) ions was found to be in the order of 3.07 × 10-2 cm2 and higher than 5% w/w clay sintered to 1000 °C and bare graphite. CV analysis shows that both, 5 % w/w raw clay and 5 % w/w clay sintered to 1000 °C exhibited high peak currents towards Pb(II) ions. The mobility of the Pb(II) ions is found to increase when 5% w/w clay sintered to 1000 °C is utilized as membrane/electrode, leading to an increase in the amount of reduced Pb(II) ions on the surfaces of the clay membranes/electrodes. The study suggests successful filtration of Pb(II) ions through the proposed membrane/electrode and a much better accumulation than Fe(II) at the surface of the membrane/electrode before being subjected to filtration.  相似文献   

20.
《Solid State Sciences》2007,9(7):628-635
Considering the need for large-scale production of silica aerogel powders, the present research was aimed to develop a simple, cost-effective and rapid process based on water-glass precursor via ambient pressure drying (APD) route. It has been shown that the surface chemical modification of hydrogels can rapidly be carried out with extremely low doses (e.g. 5 g of hexamethyldisilazane (HMDS) for 100 g of hydrogel) of HMDS by a co-precursor method which makes this process quite cost-effective. The surface modification in the aqueous phase essentially resulted in the displacement of the pore water and the simultaneous one-step solvent exchange using n-hexane converted the hydrogel into an organo-gel in 3 h and thus the total processing time of the aerogel powder production via APD could drastically be reduced to 5 h. The solvent n-hexane could be recollected during the drying stage and it does not add much to the material cost. The aerogel powders with tapping densities and specific surface areas in the range of 0.100–0.309 g/cm3 and 473–776 m2/g, respectively, could be synthesized using this novel route. The surface modification of the aerogel powders was explored by means of X-ray photoelectron spectroscopy (XPS) in conjunction with the Fourier transform infrared (FT-IR) spectroscopy. The textural investigations revealed that the aerogel powders with a wide variation in their pore size distributions and average pore diameters can easily be synthesized by varying the silica content in the sol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号