首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

2.
Problems for parabolic partial differential equations with nonlocal boundary conditions have been studied in many articles, but boundary value problems for hyperbolic partial differential equations have so far remained nearly uninvestigated. In this article a numerical technique is presented for the solution of a nonclassical problem for the one‐dimensional wave equation. This method uses the cubic B‐spline scaling functions. Some numerical results are reported to support our study. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

3.
The first and second order of accuracy in time and second order of accuracy in the space variables difference schemes for the numerical solution of the initial‐boundary value problem for the multidimensional hyperbolic equation with dependent coefficients are considered. Stability estimates for the solution of these difference schemes and for the first and second order difference derivatives are obtained. Numerical methods are proposed for solving the one‐dimensional hyperbolic partial differential equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

4.
The first‐order of accuracy difference scheme for approximately solving the multipoint nonlocal boundary value problem for the differential equation in a Hilbert space H, with self‐adjoint positive definite operator A is presented. The stability estimates for the solution of this difference scheme are established. In applications, the stability estimates for the solution of difference schemes of the mixed type boundary value problems for hyperbolic–parabolic equations are obtained. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
Nonlocal mathematical models appear in various problems of physics and engineering. In these models the integral term may appear in the boundary conditions. In this paper the problem of solving the one‐dimensional parabolic partial differential equation subject to given initial and nonlocal boundary conditions is considered. These kinds of problems have certainly been one of the fastest growing areas in various application fields. The presence of an integral term in a boundary condition can greatly complicate the application of standard numerical techniques. As a well‐known class of meshless methods, the radial basis functions are used for finding an approximation of the solution of the present problem. Numerical examples are given at the end of the paper to compare the efficiency of the radial basis functions with famous finite‐difference methods. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

6.
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

7.
讨论了一类双曲偏泛函微分方程边值问题,给出了在两类边值条件下解振动的充分条件。  相似文献   

8.
In this article, we continue the numerical study of hyperbolic partial differential‐difference equation that was initiated in (Sharma and Singh, Appl Math Comput 9 ). In Sharma and Singh, the authors consider the problem with sufficiently small shift arguments. The term negative shift and positive shift are used for delay and advance arguments, respectively. Here, we propose a numerical scheme that works nicely irrespective of the size of shift arguments. In this article, we consider hyperbolic partial differential‐difference equation with negative or positive shift and present a numerical scheme based on the finite difference method for solving such type of initial and boundary value problems. The proposed numerical scheme is analyzed for stability and convergence in L norm. Finally, some test examples are given to validate convergence, the computational efficiency of the numerical scheme and the effect of shift arguments on the solution.© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
In this research, the problem of solving the two‐dimensional parabolic equation subject to a given initial condition and nonlocal boundary specifications is considered. A technique based on the pseudospectral Legendre method is proposed for the numerical solution of the studied problem. Several examples are given and the numerical results are shown to demonstrate the efficiently of the newly proposed method. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

10.
This article is concerned with a method for solving nonlocal initial‐boundary value problems for parabolic and hyperbolic integro‐differential equations in reproducing kernel Hilbert space. Convergence of the proposed method is studied under some hypotheses which provide the theoretical basis of the proposed method and some error estimates for the numerical approximation in reproducing kernel Hilbert space are presented. Finally, two numerical examples are considered to illustrate the computation efficiency and accuracy of the proposed method. © 2016 The Authors Numerical Methods for Partial Differential Equations Published by Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 174–198, 2017  相似文献   

11.
Many physical phenomena are modeled by nonclassical hyperbolic boundary value problems with nonlocal boundary conditions. In this paper, the problem of solving the one-dimensional wave equation subject to given initial and non-local boundary conditions is considered. These non-local conditions arise mainly when the data on the boundary cannot be measured directly. Several finite difference methods with low order have been proposed in other papers for the numerical solution of this one dimensional non-classic boundary value problem. Here, we derive a new family of efficient three-level algorithms with higher order to solve the wave equation and also use a Simpson formula with higher order to approximate the integral conditions. Additionally, the fourth-order formula is also adapted to nonlinear equations, in particular to the well-known nonlinear Klein–Gordon equations which many physical problems can be modeled with. Numerical results are presented and are compared with some existing methods showing the efficiency of the new algorithms.  相似文献   

12.
The hyperbolic partial differential equation with an integral condition arises in many physical phenomena. In this research a numerical technique is developed for the one‐dimensional hyperbolic equation that combine classical and integral boundary conditions. The proposed method is based on shifted Legendre tau technique. Illustrative examples are included to demonstrate the validity and applicability of the presented technique. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 282–292, 2007  相似文献   

13.
A Legendre pseudospectral method is proposed for solving approximately an inverse problem of determining an unknown control parameter p(t) which is the coefficient of the solution u(x, y, z, t) in a diffusion equation in a three‐dimensional region. The diffusion equation is to be solved subject to suitably prescribed initial‐boundary conditions. The presence of the unknown coefficient p(t) requires an extra condition. This extra condition considered as the integral overspecification over the spacial domain. For discretizing the problem, after homogenization of the boundary conditions, we apply the Legendre pseudospectral method in a matrix based manner. As a results a system of nonlinear differential algebraic equations is generated. Then by using suitable transformation, the problem will be converted to a homogeneous time varying system of linear ordinary differential equations. Also a pseudospectral method for efficient solving of the resulted system of ordinary differential equations is proposed. The solution of this system gives the approximation to values of u and p. The matrix based structure of the present method makes it easy to implement. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed computational procedure. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 74‐93, 2012  相似文献   

14.
We study a second order hyperbolic initial‐boundary value partial differential equation (PDE) with memory that results in an integro‐differential equation with a convolution kernel. The kernel is assumed to be either smooth or no worse than weakly singular, that arise for example, in linear and fractional order viscoelasticity. Existence and uniqueness of the spatial local and global Galerkin approximation of the problem is proved by means of Picard's iteration. Then, spatial finite element approximation of the problem is formulated, and optimal order a priori estimates are proved by the energy method. The required regularity of the solution, for the optimal order of convergence, is the same as minimum regularity of the solution for second order hyperbolic PDEs. Spatial rate of convergence of the finite element approximation is illustrated by a numerical example. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 548–563, 2016  相似文献   

15.
Many physical subjects are modeled by nonclassical parabolic boundary value problems with nonlocal boundary conditions replacing the classic boundary conditions. In this article, we introduce a new numerical method for solving the one‐dimensional parabolic equation with nonlocal boundary conditions. The approximate proposed method is based upon the composite spectral functions. The properties of composite spectral functions consisting of terms of orthogonal functions are presented and are utilized to reduce the problem to some algebraic equations. The method is easy to implement and yields very accurate result. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

16.
We study a problem in stochastic functional differential equations which, in addition to a standard one-one-parameter noise term involves a random perturbation of the memory. This problem can also be regarded as a first order hyperbolic system of stochastic partial differential equations with given initial data and nonlocal boundary data. Existence and uniqueness of a solution is established and the generator of the associated Markov process is analyzed. Thereafter, for two model problems arising from first- and second-order integro-differential equations suggested by physical applications we establish asymptotic stability in probability of the associated stochastic processes.  相似文献   

17.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

18.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

19.
The present paper is devoted to study the space identification problem for the elliptic‐telegraph differential equation in Hilbert spaces with the self‐adjoint positive definite operator. The main theorem on the stability of the space identification problem for the elliptic‐telegraph differential equation is proved. In applications, theorems on the stability of three source identification problems for one dimensional with nonlocal conditions and multidimensional elliptic‐telegraph differential equations are established.  相似文献   

20.
The mathematical model of the three‐dimensional semiconductor devices of heat conduction is described by a system of four quasi‐linear partial differential equations for initial boundary value problem. One equation of elliptic form is for the electric potential; two equations of convection‐dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Upwind finite difference fractional step methods are put forward. Some techniques, such as calculus of variations, energy method multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates and techniques are adopted. Optimal order estimates in L2 norm are derived to determine the error in the approximate solution.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号