首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a robust adaptive control law for a class of uncertain nonlinear systems is proposed. The proposed controller guarantees asymptotic output tracking of systems in the strict-feedback form with unknown static parameters, and matched and unmatched dynamic uncertainties. This controller takes advantages of a robust stability property of the Lyapunov redesign method and a systematic design procedure of the backstepping technique. In fact, the backstepping technique is employed to enrich the Lyapunov redesign method to compensate for not only matched - but also unmatched-uncertainties. On the other hand, using the Lyapunov redesign method in each step of the conventional backstepping technique makes backstepping robust. The suggested controller is designed through repeatedly utilizing the Lyapunov redesign method in each step of the backstepping technique. Simulation results reveal the efficiency of the Lyapunov redesign-based backstepping controller.  相似文献   

2.
A new output feedback adaptive control scheme for multi-input and multi-output (MIMO) nonlinear systems is presented based on the high frequency gain matrix factorization and the backstepping approach with vector form. The only required prior knowledge about the high frequency gain matrix of the linear part of the system is the signs of its leading principal minors. The proposed controller is a dynamic one that only needs the measurement of the system output, and the observer and the filters are introduced in order to construct a virtual estimate of the unmeasured system states. The global stability of the closed-loop systems is guaranteed through this control scheme, and the tracking error converges to zero. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

3.
This paper presents a novel adaptive backstepping tracking control for nonlinear uncertain active suspension system, which can achieve the coordinated control over the sprung-mass acceleration and suspension dynamic displacement for nonlinear uncertain active suspension system based on a developing model-reference system. First, according to adaptive backstepping control principle, this model-reference system is designed with purpose of providing the ideal reference trajectories for the sprung-mass displacement and vertical velocity, respectively. Then, the design of a coordinated adaptive backstepping tracking controller is conducted to make the control plant accurately track the prescribed performances of the model-reference system by virtue of the backstepping technique and Lyapunov stability theory, in which a virtual controller with online parameter regulation rules is designed and implemented to guarantee the stability of vehicle body. Finally, a numerical example is provided to verify the effectiveness of our designed adaptive backstepping tracking controller under various operating scenarios.  相似文献   

4.
In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.  相似文献   

5.
This paper deals with the problem of adaptive fuzzy tracking control for a class of switched uncertain nonlinear systems. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and the adaptive backstepping and dynamic surface control techniques are adopted. First, a new state-dependent switching method is proposed. By introducing convex combination technique and designing a state-dependent switching law, only the solvability of the adaptive tracking control problem for a convex combination of the subsystems is necessary. Second, a new common Lyapunov function with switched adaptive parameters is constructed to reduce the conservatism. Third, to avoid Zeno behavior, a modified state-dependent switching law with dwell time is proposed. It is shown that under the proposed control and switching laws, all the signals of the closed-loop system are bounded and all the state tracking errors can converge to a priori accuracy, even if some subsystems are uncontrollable. Finally, the effectiveness of the proposed method is illustrated through two simulation examples.  相似文献   

6.
In this paper, an adaptive fuzzy output tracking control approach is proposed for a class of single input and single output (SISO) uncertain pure-feedback switched nonlinear systems under arbitrary switchings. Fuzzy logic systems are used to identify the unknown nonlinear system. Under the framework of the backstepping control design and fuzzy adaptive control, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach.  相似文献   

7.
针对一类具有摄动的严格反馈非线性时滞系统,基于后推设计方法,利用第一类模糊系统的逼近能力,提出了一种新的直接自适应控制方案。该方案避免了虚拟控制增益符号已知的假设。设计中引入连续鲁棒项对系统的摄动部分进行抑制。通过理论分析,证明了闭环系统是半全局一致终结有界的,跟踪误差收敛到一个小的残差集内。  相似文献   

8.
非线性时变系统自适应backstepping学习控制   总被引:1,自引:0,他引:1  
针对含有混合未知参数的高阶非线性系统,利用backstepping方法,提出了一种自适应重复学习控制方法,该方法与分段积分机制相结合,可以处理时变参数在一个未知紧集内周期性快时变的非线性系统,通过构造微分-差分参数自适应律,设计了一种自适应控制策略,使跟踪误差在误差平方范数意义下渐近收敛于零,利用Lyapunov泛函,给出了闭环系统收敛的一个充分条件.实例仿真结果说明了该方法的有效性.  相似文献   

9.
为了解决非线性、不确定电液伺服系统的位置跟踪控制问题,提出了一种基于反步法的自适应终端滑模控制方法.该方法将自适应控制和终端滑模方法结合在一起,一方面,提出的自适应控制律可以对电液伺服系统中的不确定性参数进行有效在线估计和补偿;另一方面,通过引入误差吸引子到滑模趋近律中得到变系数趋近律,设计的终端滑模控制律不仅能够消除普通终端滑模控制律中的非奇异项,还大大降低了滑模面的抖震.最终,根据Lyapunov稳定性理论,位置跟踪误差的有限时间稳定性得以严格证明.将该方法与积分反步滑模控制和线性滑模控制方法进行了对比研究,仿真结果验证了该方法在电液伺服系统位置跟踪控制方面良好的鲁棒性和跟踪精度.  相似文献   

10.
卫星姿态跟踪的间接自适应模糊预测控制   总被引:1,自引:0,他引:1  
孙光  霍伟 《系统科学与数学》2009,29(10):1327-1342
对含模型不确定性和未知干扰的卫星姿态系统提出了具有间接自适应模糊补偿的广义预测跟踪控制方法. 首先基于卫星姿态动力学模型设计了非线性广义预测控制律, 再利用自适应模糊系统逼近预测控制律中的模型不确定项, 使得所得到的预测控制算法可实施.证明了当卫星姿态模型中不确定项满足一定条件时, 所设计的控制律可使卫星姿态跟踪误差收敛到原点的小邻域内,并仿真结果验证了所提出方法的有效性.  相似文献   

11.
研究了具有死区输入的预设约束未知高阶严格反馈非线性系统的控制问题,提出了一种基于免疫函数的自抗扰预设漏斗约束自适应控制策略。首先,针对系统内部的未知问题,采用免疫函数与扩张状态观测器结合对系统内部未知项进行观测;其次,通过Lyapunov方法与漏斗控制相结合设计控制器,使得跟踪误差能够维持在预先设定的漏斗约束范围内;同时,利用双曲正切函数速率变化快这一特性设计自适应控制律,引入指令滤波器避免反步法中重复求导问题,分析证明了闭环系统所有信号的有界性。仿真实例表明了控制方法的有效性。  相似文献   

12.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

13.
A novel scheme is proposed for the design of backstepping control for a class of state-feedback nonlinear systems. In the design, the unknown nonlinear functions are approximated by the neural networks (NNs) identification models. The Lyapunov function of every subsystem consists of the tracking error and the estimation errors of NN weight parameters. The adaptive gains are dynamically determined in a structural way instead of keeping them constants, which can guarantee system stability and parameter estimation convergence. When the modeling errors are available, the indirect backstepping control is proposed, which can guarantee the functional approximation error will converge to a rather small neighborhood of the minimax functional approximation error. When the modeling errors are not available, the direct backstepping control is proposed, where only the tracking error is necessary. The simulation results show the effectiveness of the proposed schemes.  相似文献   

14.
电液位置伺服系统的鲁棒自适应控制   总被引:2,自引:2,他引:0       下载免费PDF全文
针对由于参数不确定性、非线性等因素导致的电液位置伺服系统跟踪控制问题,基于Lyapunov(李雅普诺夫)稳定性理论,提出了一种具有参数自适应能力的鲁棒自适应反步方法.通过设计的自适应律来抑制由于参数不确定性对系统跟踪控制性能的影响,设计的鲁棒控制律使得系统具有全局一致渐近稳定性能.此外,还对伺服阀换向引起的不连续性进行了近似处理.以伺服阀控对称缸系统为控制对象,仿真结果表明,和传统的PD控制方法相比,在参数不确定性的情况下,该控制方法使得电液伺服系统的位置跟踪误差波动较小,且能以较快速度渐近收敛到0,同时所需要的伺服阀输入电压信号值也更小,相关不确定参数在经过较短时间后均可以收敛到其稳定值,从而验证了所提出算法的有效性.  相似文献   

15.
In this article, an adaptive fuzzy output tracking control approach is proposed for a class of multiple‐input and multiple‐output uncertain switched nonlinear systems with unknown control directions and under arbitrary switchings. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. A Nussbaum gain function is introduced into the control design and the unknown control direction problem is solved. Under the framework of the backstepping control design, fuzzy adaptive control and common Lyapunov function stability theory, a new adaptive fuzzy output tracking control method is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed‐loop system are bounded and the tracking error remains an adjustable neighborhood of the origin. A numerical example is provided to illustrate the effectiveness of the proposed approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 155–166, 2016  相似文献   

16.
针对一类非严格反馈的时滞非线性系统, 研究了一类基于观测器的自适应神经网络控制问题.针对系统中存在未知状态变量的问题, 设计了一个状态观测器.利用反步法和径向基神经网络的逼近特性, 提出了一种自适应神经网络输出反馈控制方法.所设计的控制器保证了闭环系统中所有信号的半全局一致有界性.最后, 通过仿真验证了所提控制方法的有效性.  相似文献   

17.
针对一类带有不确定性的非仿射非线性系统,利用Backstepping设计方法,设计了一种神经网络自适应控制器.该控制器可以实现跟踪特性.基于Lyapunov函数,得出稳定的权学习算法.并利用Lyapunov稳定性理论证明了闭环系统是一致最终有界的.仿真结果表明,这种控制器具有良好的鲁棒性和跟踪特性.  相似文献   

18.
In this paper, an adaptive fuzzy output feedback approach is proposed for a single-link robotic manipulator coupled to a brushed direct current (DC) motor with a nonrigid joint. The controller is designed to compensate for the nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems while only requiring the measurements of link position. Using fuzzy logic systems to approximate the unknown nonlinearities, an adaptive fuzzy filter observer is designed to estimate the immeasurable states. By combining the adaptive backstepping and dynamic surface control (DSC) techniques, an adaptive fuzzy output feedback control approach is developed. Stability proof of the overall closed-loop system is given via the Lyapunov direct method. Three key advantages of our scheme are as follows: (i) the proposed adaptive fuzzy control approach does not require that all the states of the system be measured directly, (ii) the proposed control approach can solve the control problem of robotic manipulators with unknown nonlinear uncertainties, and (iii) the problem of “explosion of complexity” existing in the conventional backstepping control methods is avoided. The detailed simulation results are provided to demonstrate the effectiveness of the proposed controller.  相似文献   

19.
Andreas Kugi  Daniel Daniel 《PAMM》2005,5(1):169-172
This contribution is devoted to the infinite-dimensional control design for a certain class of infinite-dimensional systems. As first example a piezoelectric cantilever with a tip mass is considered. The control objective is to provide two independently controllable degrees-of-freedom for the tip mass in form of the tip position and the tip angle. The control concept being proposed consists of an open-loop flatness-based tracking controller and a linear dynamic feedback controller in order to asymptotically stabilize the closed-loop error system. A similar concept is then applied to a second example, a gantry crane system with heavy chains and a payload. Thereby, the knowledge of the energy flows into and within the system is exploited to derive a stabilizing controller of the error system by means of the integrator backstepping method. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
To solve disturbances, nonlinearity, nonholonomic constraints and dynamic coupling between the platform and its mounted robot manipulator, an adaptive sliding mode controller based on the backstepping method applied to the robust trajectory tracking of the wheeled mobile manipulator is described in this article. The control algorithm rests on adopting the backstepping method to improve the global ultimate asymptotic stability and applying the sliding mode control to obtain high response and invariability to uncertainties. According to the Lyapunov stability criterion, the wheeled mobile manipulator is divided into several stabilizing subsystems, and an adaptive law is designed to estimate the general nondeterminacy, which make the controller be capable to drive the trajectory tracking error of the mobile manipulator to converge to zero even in the presence of perturbations and mathematical model errors. We compare our controller with the robust neural network based algorithm in nonholonomic constraints and uncertainties, and simulation results prove the effectivity and feasibility of the proposed method in the trajectory tracking of the wheeled mobile manipulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号