首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of potassium (η2‐4‐allyl‐2‐methoxyphenol)trichloridoplatinate(II), K[PtCl3(C10H12O2)], ( 1 ), starting from Zeise's salt and Ocimum sanctum L. oil has been optimized. Starting from ( 1 ), three new platinum(II) complexes, namely (η2‐4‐allyl‐2‐methoxyphenol)chlorido(2‐methylquinolin‐8‐olato‐κ2N ,O )platinum(II), ( 2 ), (η2‐4‐allyl‐2‐methoxyphenol)chlorido(5‐nitroquinolin‐8‐olato‐κ2N ,O )platinum(II), ( 3 ), and (η2‐4‐allyl‐2‐methoxyphenol)chlorido(5,7‐dichloroquinolin‐8‐olato‐κ2N ,O )platinum(II), [Pt(C9H4Cl2NO)Cl(C10H12O2)], ( 4 ), containing eugenol and a quinolin‐8‐ol derivative (R‐OQ), have been synthesized and characterized by elemental analyses, MS, IR, 1H NMR and NOESY spectra. For ( 1 ) and ( 4 ), single‐crystal X‐ray diffraction studies were also carried out. Complexes ( 2 )–( 4 ) show good inhibiting abilities on three human cancer cell lines, i.e. KB, Hep‐G2 and LU, with IC50 values of 1.42–17.8 µM . Complex ( 3 ) gives an impressively high activity against KB, Hep‐G2, LU and MCF‐7, with IC50 values of 1.42–4.91 µM , which are much lower than those of cisplatin and some other platinum(II) complexes.  相似文献   

2.
The reaction between fluorenyllithium and Mo(η3‐C3H5)Cl(NCMe)2(CO)2 led to the isolation of di‐μ3‐chlorido‐di‐μ3‐hydroxido‐tetrakis[(η3‐allyl)dicarbonylmolybdenum(II)]–9‐fluorenone–tetrahydrofuran (1/1/1), [Mo4(C3H5)4Cl2(OH)2(CO)8]·C4H8O·C13H8O. The tetrametallic Mo4 unit constitutes the first example of a complex containing simultaneously two μ3‐OH groups and two μ3‐Cl anions capping the metallic trigonal prism. The four crystallographically independent Mo2+ centres exhibit distorted octahedral geometry with the η3‐allyl groups being trans‐coordinated to a μ3‐OH group and the carbonyl groups occupying the equatorial plane. Space‐filling tetrahydrofuran and 9‐fluorenone molecules are engaged in strong O—H...O hydrogen‐bonding interactions with Mo43‐allyl)4Cl2(OH)2(CO)8 complexes.  相似文献   

3.
A novel family of four 1‐bromo‐2,6‐bis{[(λ5‐phosphanylidene)imino]methyl}benzene ligands has been synthesized and characterized. The phosphiniminomethyl substituents are decorated with either three phenyl groups, two phenyl and one cyclohexyl group, one phenyl and two cyclohexyl groups, or three cyclohexyl groups. Each ligand was metallated using zero‐valent nickel through an oxidative addition to form a family of organonickel(II) complexes, namely (2,6‐bis{[(triphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) dichloromethane hemisolvate, [NiBr(C44H37N2P2)]·0.5CH2Cl2, (2,6‐bis{[(cyclohexyldiphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) diethyl ether hemisolvate, [NiBr(C44H49N2P2)]·0.5C4H10O, (2,6‐bis{[(dicyclohexylphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H61N2P2)], and (2,6‐bis{[(tricyclohexyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H73N2P2)]. This family of complexes represents a useful opportunity to investigate the impact of incrementally changing the steric characteristics of a complex on its structure and reactivity.  相似文献   

4.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

5.
The reaction of the electronically unsaturated platina‐β‐diketone [Pt2{(COMe)2H}2(μ‐Cl)2] ( 1 ) with Ph2PCH2CH2CH2SPh ( 2 ) leads selectively to the formation of the acetyl(chlorido) platinum(II) complex (SP‐4‐3)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SPh‐κPS)] ( 4 ) having the γ‐phosphinofunctionalized propyl phenyl sulfide coordinated in a bidentate fashion (κPS). In boiling benzene complex 4 undergoes decarbonylation yielding the methyl(chlorido) platinum(II) complex (SP‐4‐3)‐[PtMeCl(Ph2PCH2CH2CH2SPh‐κPS)] ( 6 ). However, the reaction of 1 with the analogous γ‐diphenylphosphinofunctionalized propyl phenyl sulfone Ph2PCH2CH2CH2SO2Ph ( 3 ) affords the acetyl(chlorido) platinum(II) complex (SP‐4‐4)‐[Pt(COMe)Cl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 5 ). In boiling benzene complex 5 undergoes a CO extrusion yielding (SP‐4‐4)‐[PtMeCl(Ph2PCH2CH2CH2SO2Ph‐κP)2] ( 8 ) whereas in presence of 1 the formation of the carbonyl complex (SP‐4‐3)‐[PtMeCl(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)] ( 7 ) is observed. Addition of Ag[BF4] to complex 5 leads to the formation of the cationic methyl(carbonyl) platinum(II) complex (SP‐4‐1)‐[PtMe(CO)(Ph2PCH2CH2CH2SO2Ph‐κP)2][BF4] ( 9 ). All complexes were characterized by microanalysis and NMR spectroscopy (1H, 13C, 31P) and complexes 4 and 6 additionally by single‐crystal X‐ray diffraction analyses.  相似文献   

6.
The title PtII complexes, viz. (2,2′‐bi­pyridine‐κ2N,N′)[(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′]­platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C10H8N2)](PF6)2, and [(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′](1,10‐phenanthroline‐κ2N,N′)platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C12H8N2)](PF6)2, containing an aromatic α‐di­imine and a non‐planar di­amino­cyclo­hexane, both form a ladder‐type structure, which is constructed via loose π–π stacking on the α‐di­imine ligands and hydrogen bonding between the cyclic amines and the counter‐anions. In the former compound, there are two independent complex cations, both of which have a twofold axis through the Pt atom.  相似文献   

7.
High‐spin cobalt(II) complexes are considered useful building blocks for the synthesis of single‐molecule magnets (SMM) because of their intrinsic magnetic anisotropy. In this work, three new cobalt(II) chloride adducts with labile ligands have been synthesized from anhydrous CoCl2, to be subsequently employed as starting materials for heterobimetallic compounds. The products were characterized by elemental, spectroscopic (EPR and FT–IR) and single‐crystal X‐ray diffraction analyses. trans‐Tetrakis(acetonitrile‐κN )bis(tetrahydrofuran‐κO )cobalt(II) bis[(acetonitrile‐κN )trichloridocobaltate(II)], [Co(C2H3N)4(C4H8O)2][CoCl3(C2H3N)]2, (1), comprises mononuclear ions and contains both acetonitrile and tetrahydrofuran (thf) ligands, The coordination polymer catena‐poly[[tetrakis(propan‐2‐ol‐κO )cobalt(II)]‐μ‐chlorido‐[dichloridocobalt(II)]‐μ‐chlorido], [Co2Cl4(C3H8O)4], (2′), was prepared by direct reaction between anhydrous CoCl2 and propan‐2‐ol in an attempt to rationalize the formation of the CoCl2–alcohol adduct (2), probably CoCl2(HOiPr)m . The binuclear complex di‐μ‐chlorido‐1:2κ4Cl :Cl‐dichlorido‐2κ2Cl‐tetrakis(tetrahydrofuran‐1κO )dicobalt(II), [Co2Cl4(C4H8O)4], (3), was obtained from (2) after recrystallization from tetrahydrofuran. All three products present cobalt(II) centres in both octahedral and tetrahedral environments, the former usually less distorted than the latter, regardless of the nature of the neutral ligand. Product (2′) is stabilized by an intramolecular hydrogen‐bond network that appears to favour a trans arrangement of the chloride ligands in the octahedral moiety; this differs from the cis disposition found in (3). The expected easy displacement of the bound solvent molecules from the metal coordination sphere makes the three compounds good candidates for suitable starting materials in a number of synthetic applications.  相似文献   

8.
Achiral {2‐[2‐(η5‐cyclopentadienyl)‐2‐methylpropyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C12H14N2)], (I), and closely related racemic (SR)‐{2‐[(η5‐cyclopentadienyl)(phenyl)methyl]‐1H‐imidazolyl‐κN1}bis(N,N‐diethylamido‐κN)titanium(IV), [Ti(C4H10N)2(C15H12N2)], (II), have been prepared by direct reactions of Ti(NEt2)4 and the corresponding 1H‐imidazol‐2‐yl side‐chain functionalized cyclopentadienes. In compound (II), there are two crystallographically independent molecules of very similar geometries connected by a noncrystallographic pseudosymmetry operation akin to a 21 screw axis. All Ti‐ligating N atoms in both (I) and (II) are in planar environments, which is indicative of an additional N→Ti pπ–dπ donation. This fact and the 18ē nature of both (I) and (II) are additionally supported by quantum chemical single‐point density functional theory (DFT) computations.  相似文献   

9.
The title compound, catena‐poly[[[bis(ethylenediamine‐κ2N,N′)platinum(II)]‐ μ‐chlorido‐[bis(ethylenediamine)platinum(IV)]‐μ‐chlorido] tetrakis{4‐[(4‐hydroxyphenyl)diazenyl]benzenesulfonate} dihydrate], {[PtIIPtIVCl2(C2H8N2)4](HOC6H4N=NC6H4SO3)4·2H2O}n, has a linear chain structure composed of square‐planar [Pt(en)2]2+ (en is ethylenediamine) and elongated octahedral trans‐[PtCl2(en)2]2+ cations stacked alternately, bridged by Cl atoms, along the b axis. The Pt atoms are located on an inversion centre, while the Cl atoms are disordered over two sites and form a zigzag ...Cl—PtIV—Cl...PtII... chain, with a PtIV—Cl bond length of 2.3140 (14) Å, an interatomic PtII...Cl distance of 3.5969 (15) Å and a PtIV—Cl...PtII angle of 170.66 (6)°. The structural parameter indicating the mixed‐valence state of the Pt atom, expressed by δ = (PtIV—Cl)/(PtII...Cl), is 0.643.  相似文献   

10.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

11.
The title compound, [Pt(C6H10NO2)(C5H14N2)]2(SO4), crystallizes with two cations in the asymmetric unit. The two complex cations, which have a square‐planar PtII coordination, are chemically identical but differ slightly in the conformations of their amine groups. A neutral complex, viz. (2,2‐di­methyl‐1,3‐propane­di­amine‐κ2N,N′)bis(2‐piperidine­carb­oxyl­ato‐κN)platinum(II), is shown to form in solution and to change rapidly into the title compound.  相似文献   

12.
The syntheses and structures of two mixed‐ligand complexes of platinum(II) with deprotonated oxopurine bases and tri­phenyl­phosphine are reported, namely the theophyllinate complex cis‐bis(1,2,3,6‐tetra­hydro‐1,3‐di­methyl­purine‐2,6‐dionato‐κN7)­bis(tri­phenyl­phosphine‐κP)­platinum(II), [Pt(C7H7N4O2)2(C18H15P)2], (I), and the theobrominate complex cis‐chloro(1,2,3,6‐tetrahydro‐3,7‐dimethylpurine‐2,6‐dionato‐κN1)­bis(tri­phenyl­phosphine‐κP)­platinum(II) ethanol hemisolvate, [PtCl(C7H7N4O2)(C18H15P)2]·0.5C2H5OH, (II). In (I), the coordination geometry of Pt is square planar, formed by the two coordinating N atoms of the theophyl­linate anions in a cis arrangement and two P atoms from the tri­phenyl­phosphine groups. In (II), there are two crystallographically independent mol­ecules. They both exhibit a square‐planar coordination geometry around Pt involving one Cl atom, the coordinating N atom of the theobrominate anion and two P atoms from the tri­phenyl­phosphine groups. The two tri­phenyl­phosphine groups are arranged in a cis configuration in both structures. The heterocyclic rings are rotated with respect to the coordination plane of the metal by 82.99 (8) and 88.09 (8)° in complex (I), and by 85.91 (16) and 88.14 (18)° in complex (II). Both structures are stabilized by intramolecular stacking interactions involving the purine rings and the phenyl rings of adjacent tri­phenyl­phosphine moieties.  相似文献   

13.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

14.
A bis(phosphine)borane ambiphilic ligand, [Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh2)‐ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] ( 1 ) in which the arylborane is η3BCC‐coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6‐dimethylphenyl) afforded [PtL(FcPPB)] {L=CO ( 2 ) and CNXyl ( 3 )} featuring η2BC‐ and η1B‐arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(μ‐H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2H to [Pt(FcPPB)] afforded [Pt(C2Ph)(μ‐H)(FcPPB)] ( 5 ), which rapidly converted to [Pt(FcPPB′)] ( 6 ; FcPPB′=[Fe(η5‐C5H4PPh2)(η5‐C5H4PtBu{C6H4(BPh‐CPh=CHPh‐Z)‐ortho}]) in which the newly formed vinylborane is η3BCC‐coordinated. Unlike arylborane complex 1 , vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2Ph at room temperature.  相似文献   

15.
The three title compounds, namely 4‐phenyl‐1H‐imidazolium hexa‐μ2‐chloro‐chloro‐μ4‐oxo‐tris­(4‐phenyl‐1H‐imidazole‐κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa‐μ2‐chloro‐μ4‐oxo‐tetra­kis­(pyridine N‐oxide‐κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa‐μ2‐chloro‐tetra­kis(2‐methyl‐1H‐imidazole‐κN1)‐μ4‐oxo‐tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.  相似文献   

16.
The coordination chemistry of platinum(II) with a series of thiosemicarbazones {R(H)C2=N3‐N2(H)‐C1(=S)‐N1H2, R = 2‐hydroxyphenyl, H2stsc; pyrrole, H2ptsc; phenyl, Hbtsc} is described. Reactions of trans‐PtCl2(PPh3)2 precursor with H2stsc (or H2ptsc) in 1 : 1 molar ratio in the presence of Et3N base yielded complexes, [Pt(η3‐ O, N3, S‐stsc)(PPh3)] ( 1 ) and [Pt(η3‐ N4, N3, S‐ptsc)(PPh3)] ( 2 ), respectively. Further, trans‐PtCl2(PPh3)2 and Hbtsc in 1 : 2 (M : L) molar ratio yielded a different compound, [Pt(η2‐ N3, S‐btsc)(η1‐S‐btsc)(PPh3)] ( 3 ). Complex 1 involved deprotonation of hydrazinic (‐N2H‐) and hydroxyl (‐OH) groups, and stsc2? is coordinating via O, N3, S donor atoms, while complex 2 involved deprotonation of hydrazinic (‐N2H‐) and ‐N4H groups and ptsc2? is probably coordinating via N4, N3, S donor atoms. Reaction of PdCl2(PPh3)2 with Hbtsc‐Me {C6H5(CH3)C2=N3‐N2(H)‐C1(=S)‐N1H2} yielded a cyclometallated complex [Pd(η3‐C, N3, S‐btsc‐Me)(PPh3)] ( 4 ). These complexes have been characterized with the help of analytical data, spectroscopic techniques {IR, NMR (1H, 31P), U.V} and single crystal X‐ray crystallography ( 1 , 3 and 4 ). The effects of substituents at C2 carbon of thiosemicarbazones on their dentacy and cyclometallation are emphasized.  相似文献   

17.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

18.
Reacting stoichiometric amounts of 1‐(diphenylphosphino)ferrocene­carboxylic acid and [Ti(η5‐C5HMe4)22‐Me3SiC[triple‐bond]CSiMe3)] produced the title carboxyl­atotitanocene complex, [{μ‐1κ2O,O′:2(η5)‐C5H4CO2}{2(η5)‐C5H4P(C6H5)2}{1(η5)‐C5H(CH3)4}2FeIITiIII] or [FeTi(C9H13)2(C6H4O2)(C17H14P)]. The angle subtended by the Ti/O/O′ plane, where O and O′ are the donor atoms of the κ2‐carboxy­late group, and the plane of the carboxyl‐substituted ferrocene cyclo­penta­dienyl is 24.93 (6)°.  相似文献   

19.
The zinc alkoxide molecules in di‐μ3‐ethanolato‐diethyltetrakis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)tetrazinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis(μ3‐2‐ethoxyphenolato‐κ4O1,O2:O1:O1)bis(μ2‐2‐ethoxyphenolato‐κ3O1,O2:O1)bis(μ2‐2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ3O3,O4:O3)bis(2‐methyl‐4‐oxo‐4H‐pyran‐3‐olato‐κ2O3,O4)tetrazinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetrameric unit and additionally one molecule of toluene for (II). The ZnII atoms are four‐ and six‐coordinated in distorted tetrahedral and octahedral geometries for (I), and six‐coordinated in a distorted octahedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetrahedra and ZnO6 octahedra for (I), and of four ZnO6 octahedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2‐bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3‐ and μ2‐bridges.  相似文献   

20.
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号