首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 785 毫秒
1.
采用柠檬酸盐硝酸盐燃烧法制备GdAlO3:RE荧光粉体.在紫外光激发下(254nm)发现Pr共掺杂对GdAlO3:Eu红色荧光粉体发光有降低作用;Ce共掺杂对GdAlO3:Tb绿色荧光粉体发光有降低作用.激发谱研究表明,共掺杂时分别存在Eu→Pr、Tb→Ce的声子支持的共振能量传递,造成GdAlO3:Eu、GdAlO3:Tb荧光粉体发光强度降低.  相似文献   

2.
本文叙述了LaOBr∶Tb~(3 )白色荧光粉的制备工艺和其阴极射线发光性能,以及应用于投影电视管的结果。LaOBr∶Tb~(3 )白色荧光粉的发光亮度与阴极射线的激发电压和束流密度星线性关系。LaOBr∶Tb~(3 )投影管的亮度为(YGd)_2O_2S∶Tb~(3 )投影管的1.2~1.5倍,工作亮度衰减特性也好得多。此外,LaOBr∶Tb~(3 )投影管具有能在更宽的工作电流和工作温度范围内使用而不变色的优点。几种不同的投影管发光颜色的稳定性的顺序为:LaOBr∶Tb~(3 )>Y_2O_2S∶Tb~(3 )>(YGd)_2O_2S∶Tb~(3 )。  相似文献   

3.
以柠檬酸为络合剂,采用溶胶-凝胶法成功制备了Al18B4O33:Eu,Tb荧光粉.采用热分析仪、X射线衍射仪和扫描电镜分别对样品进行了热分析、结构和形貌分析,采用荧光光谱仪和亮度计测试样品的激发发射光谱和亮度.结果表明:前驱体先经700℃预烧,然后再于1100℃煅烧3h后,可获得粒度分布均匀、结晶性良好的Al18B4O33:Eu,Tb荧光粉;共掺杂Eu和Tb的Al18B4O33荧光粉可同时发出“三基色”所需要的特征发光;该荧光粉中同时存在Eu2+离子、Tb3+离子和Eu3+离子,在350~ 400 nm之间的紫外区域存在较强的激发峰,可被用于与紫外LED复合合成白光LED;通过研究Eu和Tb的掺杂量对荧光粉发光强度的影响发现,适量调节Eu和Tb的掺杂量可以改变Al18B4O33:Eu,Tb荧光粉的发光颜色和强度.  相似文献   

4.
采用高温固相法制备了ZnO/Eu3+红色长余辉发光材料.应用正交试验设计法(每个因素取3个水平,选用L9(34)正交试验表),以初始亮度为指标,研究了煅烧温度、Eu3+质量分数、敏化剂Li+质量分数、煅烧时间等4个因素对发光性能的影响;利用X射线衍射仪对合成的ZnO/Eu3+发光材料进行了物相分析,应用荧光分光光度计测定了样品的激发光谱和发射光谱,应用照射计测定了样品的发光特性.结果表明,当各个因素在水平范围内变化时,所制备的样品均具有ZnO晶格结构;荧光粉的主激发峰位于365 nm和458 nm处,主发射峰位于480 nm、570 nm和600 nm~640 nm,对应于Eu3+的4f和5d间的激发和发射.所确定的最佳合成条件为:煅烧温度850℃,w(Eu3+)=4%,w(Li+)=2.5%,煅烧时间3 h.  相似文献   

5.
采用溶胶-凝胶法制备了Yb3+和Er3+掺杂的GdAlO3荧光粉体.XRD结果表明样品为正交晶系结构.研究了不同波长激发下的室温发射光谱以及上转换发光光谱.结果表明样品在1550 nm处有很强的荧光发射,并且在样品中存在显著的Yb3+到Er3+之间的能量传递过程.980 nm红外光激发下的上转换发光光谱表明样品有绿色和...  相似文献   

6.
采用高温固相反应合成了磷酸钡钙:铈、锰红色荧光粉. 借助TG, XRD, 荧光粉相对亮度仪、荧光分光光度仪等手段系统研究了合成过程中原料化学组成及配比、合成条件对磷酸钡钙:铈、锰发光性能的影响. 结果表明, 荧光粉基质 (BaxCa1-x)3(PO4)2具有畸变的Ca3(PO4)2结构. 该荧光粉中Ce^3+是助激活剂, Mn^2+是激活剂, 由Ce3+→Mn^2+ 的能量传递使Mn^2+激发产生650 nm左右的发射, 当Ce^3+和Mn^2+浓度相等且都为0.15时, 荧光粉有最高的红色发射亮度.  相似文献   

7.
阴极射线激发下新型蓝粉的研制   总被引:1,自引:0,他引:1  
蓝色荧光粉在高密度激发下的衰减与饱和是影响显示器整体性能的因素之一,我们研制的阴极射线新型蓝粉ZnS:Zn,Pb具有优异的高密度激发特性和较好的饱和特性,本文分析了制备条件对ZnS:Zn,Pb发光性能的影响,同时注意到ZnS:Tm^2 发宽谱带蓝光有很高的亮度和效率,研究了在ZnS:Zn,Pb中掺入Tm^2 的发光情况,发现阴极射线激发下相对发光亮度有了进一步提高,并具有较好的亮度饱和特性,随着Tm^2 浓度的增加,光谱的主峰发生了蓝移,相对发光亮度有所提高,非线性有所改善,改进后的荧光粉可应用于FED,PTV等显示器中。  相似文献   

8.
采用共沉淀、溶胶-凝胶和固相反应法制备了GdAlO3:Er3+,Yb3+荧光粉.借助X射线衍射、扫描电子显微镜、傅里叶变换红外光谱、N2-吸附、吸收光谱和荧光光谱等手段研究了不同方法制备的GdAlO3:Er3+,Yb3+荧光粉结构、形貌、表面基团和光吸收及上转换发光性能.结果表明:用共沉淀法比固相反应法和溶胶-凝胶法可以在更温和的条件下制得纯相GdAlO3:Er3+,Yb3+荧光粉,用共沉淀法和溶胶-凝胶法制备的GdAlO3:Er3+,Yb3+荧光粉颗粒都在纳米尺寸,溶胶-凝胶法制得的样品存在相对严重的颗粒团聚现象,而用固相反应法制备的荧光粉为微米级颗粒.GdAlO3:Er3+,Yb3+荧光粉在980 nm激发的上转换发射光谱包含波长为524和546 nm的绿光与659 nm的红光,且三种方法制备的样品绿光发射强度都显著高于红光.不同方法制备的荧光粉上转换发光强度和红光/绿光强度比相差较大,共沉淀法制备的样品上转换发光强度要显著高于固相法以及溶胶-凝胶法制备的样品,而溶胶-凝胶法制备的样品发光中红光/绿光相对强度比最高.红外光谱显示,不同方法制备的GdAlO3:Er3+,Yb3+荧光粉表面OH-、CO32-及CO2官能团含量不同,溶胶-凝胶法制备的样品要明显高些.基于红外光谱、不同Er3+和Yb3+离子掺杂浓度及不同激光功率上转换发光的结果,对Er3+和Yb3+之间的能量传递过程及不同方法制备荧光粉的上转换发光性能进行了讨论.  相似文献   

9.
采用溶胶凝胶-沉淀法制备掺杂Tb~(3+)的ZnO/ZnS绿色荧光粉。通过XRD与IR手段对所制备的绿色荧光粉的结构进行分析。XRD测试结果表明,荧光粉主要以ZnO和ZnS形式存在,其中ZnO属于六方相结构(No.74-0534)、 ZnS属于三角晶结构(No.89-2427)。TEM显示荧光粉呈无规则块状,S的含量为1.85%(原子分数)。IR测试结果表明:绿色荧光粉主要含有Zn-S键、 Zn-O键,其相应吸收峰的位置随退火温度的升高而发生变化。利用激发谱图和发射谱图的分析,探讨荧光粉的发光性能及发光机制。荧光粉制备的最佳退火温度为800℃, Tb~(3+)以磁偶极跃迁为主(~5D_4→~7F_5);掺入ZnS可形成新的能带结构且增大复合几率,从而提高了荧光粉的发光性能,即ZnO/ZnS:Tb~(3+)荧光粉的发光性能强于ZnO:Tb~(3+)荧光粉的发光性能。  相似文献   

10.
采用溶胶-凝胶-沉淀法制备ZnO/ZnS/2TiO2:Eu3+荧光粉,并采用X射线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)以及荧光光谱技术对其结构、组成、形貌和发光性能进行表征,探讨其发光机理。结果显示,ZnO/ZnS/2TiO2:Eu3+荧光粉的结构在温度高于600℃时趋于稳定状态,呈不规则结构,由ZnO、TiO2和ZnS构成。IR谱图表明,Ti-O-Ti桥氧键网络结构有利于Eu3+之间的能量传递。荧光光谱分析表明,引入TiO2使Eu3+光谱选律禁阻解除,提高了ZnO/ZnS/2TiO2:Eu3+荧光粉的发光性能,且当nZn(NO3)2:nTiO2=1:2时荧光粉的发光性能最好,612 nm处的5D0→7F2电偶极跃迁为最强发射峰,最佳退火温度为600℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号