首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
荣升 《力学学报》1993,25(6):658-664
本文导出了在磁场作用下导电流体热对流流动的方程组及其定解条件,用数值方法模拟了由磁场控制的单晶生长热对流问题,计算结果说明磁场可以有效地抑制流动在壁面处的分离、单胞对流变为多胞对流以及速度和温度的振荡等热不稳定现象,说明了磁场对不稳定热对流有明显的致稳作用。  相似文献   

2.
Summary An analysis is made for the laminar free convection and heat transfer of a viscous electrically conducting fluid from a hot vertical plate in the case when the induced field is negligible compared to the imposed magnetic field. It is found that similar solutions for velocity and temperature exist when the imposed magnetic field (acting perpendicular to the plate) varies inversely as the fourth root of the distance from the lowest end of the plate. Explicit expressions for velocity, temperature, boundary layer thickness and Nusselt number are obtained and the effect of a magnetic field on them is studied. It is found that the effect of the magnetic field is to decrease the rate of heat transfer from the wall. In the second part, the method of characteristics is employed to obtain solutions of the time-dependent hydromagnetic free convection equations (hyperbolic) of momentum and energy put into integral form. The results yield the time required for the steady flow to be established, and the effect of the magnetic field on this time is studied.  相似文献   

3.
A theoretical investigation is made to study the influence of magnetic field on the onset of convection induced by centrifugal acceleration in a magnetic fluid filled porous medium. The layer is assumed to exhibit anisotropy in mechanical as well as thermal sense. Numerical solutions are obtained using the Galerkin method for the eigenvalue problem arising from the linear stability theory. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted depending on the anisotropy parameters to enhance convection. The effect of anisotropies of magnetic fluid filled porous media is shown to be qualitatively different from that of ordinary fluid filled porous media. This phenomenon may be helpful to increase the efficiency of suitable heat transfer devices.  相似文献   

4.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid via a porous medium bounded by a semi-infinite vertical porous plate in the presence of a transverse magnetic field. The plate moves with constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. A uniform magnetic field acts perpendicularly to the porous surface in which absorbs the micropolar fluid with a suction velocity varying with time. Numerical results of velocity distribution of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Also, the results of the skin-friction coefficient, the couple stress coefficient, the rate of the heat and mass transfers at the wall are prepared with various values of fluid properties and flow conditions.  相似文献   

5.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

6.
The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium is considered for a fluid layer heated and soluted from below in the presence of uniform magnetic field. Using linearized stability theory and normal mode analysis, an exact solution is obtained for the case of two free boundaries. For case of stationary convection, medium permeability has a destabilizing effect, whereas a stable solute gradient and magnetic field dependent viscosity have a stabilizing effect on the system. In the absence of magnetic field dependent viscosity, the destabilizing effect of non-buoyancy magnetization is depicted but in the presence of magnetic field dependent viscosity non-buoyancy magnetization may have a destabilizing or stabilizing effect on the onset of instability. The critical wave number and the critical magnetic thermal Rayleigh number for the onset of instability are also determined numerically for sufficiently large values of buoyancy magnetization parameter M1 and the results are depicted graphically. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid saturating a porous medium heated from below in the absence of stable solute gradient. The oscillatory modes are introduced due to the presence of the stable solute gradient, which were non-existent in its absence. A sufficient condition for the non-existence of overstability is also obtained. The paper also reaffirms the qualitative findings of earlier investigations which are, in fact, limiting cases of the present study.  相似文献   

7.
An analysis is performed to study the heat transfer characteristics of natural convection over a vertical cone under the combined effects of a magnetic field and thermal radiation. The cone surface is subjected to a variable surface temperature. The fluid considered is a gray absorbing/emitting, but non-scattering medium. The boundary layer equations governing the flow are reduced to non-dimensional equations using non-dimensional quantities valid in the free-convection regime. The resulting non-dimensional governing equations are solved by an implicit finite-difference method of the Crank-Nicolson type, which is rapidly convergent and unconditionally stable. Numerical results are obtained for velocity, temperature, local and average skin friction, and local and average Nusselt numbers for various values of parameters occurring in the problem and are presented in the graphical form. Excellent agreement of the results obtained with available data is demonstrated.  相似文献   

8.
郑秋云  李明军  舒适 《力学学报》2010,42(6):1060-1067
推导了具有对流效应的化学机械抛光(chemical mechanical polishing,CMP)润滑模型,研究各参数对压力场分布的影响.在此模型基础上,研究了磁流体抛光液在外界磁场作用下的润滑模型,以及外磁场对抛光过程中压力场分布的影响. 数值结果表明,具有对流效应的润滑模型的压力分布与已有经验结果更一致,能更为有效地解释CMP过程中的负压现象; 进一步通过外界磁场的作用, 可以有效地改变磁流体CMP的压力分布,这为实现对晶片的全局抛光提供了一种可供参考的新途径.   相似文献   

9.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

10.
The triple-diffusive convection in a micropolar ferromagnetic fluid layer heated and soluted from below is considered in the presence of a transverse uniform magnetic field. An exact solution is obtained for a flat fluid layer contained between two free boundaries. A linear stability analysis and a normal mode analysis method are carried out to study the onset convection. For stationary convection, various parameters such as the medium permeability, the solute gradients, the non-buoyancy magnetization, and the micropolar parameters (i.e., the coupling parameter, the spin diffusion parameter, and the micropolar heat conduction parameter) are analyzed. The critical magnetic thermal Rayleigh number for the onset of instability is determined numerically for a sufficiently large value of the buoyancy magnetization parameter M 1. The principle of exchange of stabilities is found to be true for the micropolar fluid heated from below in the absence of the micropolar viscous effect, the microinertia, and the solute gradients. The micropolar viscous effect, the microinertia, and the solute gradient introduce oscillatory modes, which are non-existent in their absence. Sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

11.
We study the problem of double-diffusive convection in a reacting fluid with a concentration and magnetic field effect–based internal heat source. A linear instability analysis and nonlinear stability analysis are performed, and using the finite element method of p order, we get the numerical results of each case. The numerical results are presented for fixed–fixed and free–free boundary conditions.  相似文献   

12.
Two- and three-dimensional convection flows in a horizontal layer of a low Prandtl number fluid heated from below and rotating about a vertical axis are studied numerically with a Galerkin method. Solutions for subcritical steady finite amplitude convection and convection in the form of standing oscillations are obtained. Parameter regimes that appear to be attainable in laboratory experiments have been emphasized. The stability of subcritical two-dimensional steady convection has been investigated and three-dimensional chaotic states of convection have been found.  相似文献   

13.
 This work provides a comprehensive theoretical analysis of a two-dimensional unsteady free convection flow of an incompressible, visco-elastic fluid past an infinite vertical porous plate. Solutions for the zero order perturbation velocity profile, the first order perturbation velocity and temperature profiles in closed form are obtained with the help of Laplace transform technique. The numerical solutions are carried out for the Prandtl number 0.1, 0.72, 1.0, 1.5 and 2.0 which are appropriate for different types of liquid metals and for different values of magnetic field parameter, M. Received on 1 September 1999  相似文献   

14.
The onset of the Benard–Marangoni convection in a horizontal porous layer permeated by a magnetohydrodynamic fluid with a nonlinear magnetic permeability is examined. The porous layer is assumed to be governed by the Brinkman model; it is bounded by a rigid surface from below and by a non-deformable free surface from above and subjected to a non-vertical magnetic field. The critical effective Marangoni number and the critical Rayleigh number are obtained for different values of the effective Darcy number, Biot number, Chandrasekhar number, nonlinear magnetic parameter, and angle from the vertical axis for the cases of stationary convection and overstability. The related eigenvalue problem is solved by using the first-order Chebyshev polynomial method.  相似文献   

15.
In the present study, free convection and heat transfer behavior of electrically conducting fluid in the boundary layer over a vertical continuously stretching surface is investigated. The effects of free convection, magnetic field, suction/blowing at the surface and the stretching speed of the surface on the flow and heat transfer characteristics are considered. By applying one-parametric group theory to analysis of the problem, a similarity solution is found. The governing equations of continuity, momentum and energy are solved numerically by a fourth-order Runge-Kutta scheme. The numerical results, which are obtained for the flow and heat transfer characteristics, reveal the influences of the parameters. Received on 9 September 1998  相似文献   

16.
A mathematical model of fluid convection under microgravity conditions is considered. The equation of state is used in a form that allows considering the fluid as a weakly compressible medium. Based on the previously proposed mathematical model of convection of a weakly compressible fluid, unsteady convective motion in a vertical band, with a heat flux periodic in time set on the solid boundaries of this band, is considered. This model of convection allows one to study the problem with the boundary thermal model oscillating in an antiphase rather than in-phase mode, while the latter was required for the model of microconvection of an isothermally incompressible fluid. Exact solutions for velocity components and temperature are derived, and the trajectories of fluid particles are constructed. For comparison, the trajectories predicted by the classical Oberbeck-Boussinesq model of convection and by the microconvection model are presented.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 52–63, March–April, 2005.  相似文献   

17.
We study both experimentally and numerically the convective flow in a tall vertical slot with differently heated walls. The flow is investigated for the fluid with the Prandtl number Pr=26, which is large enough to ensure the traveling waves as primary instability and small enough to prevent boundary layer convection. The flow evolution is determined on the base of the visual observations, power spectra and amplitude analysis. In the numerical simulations of two- and three-dimensional flows, we accept an assumption of an infinite fluid layer. The satisfactory agreement with experiment is observed, and the sequence of convection states is discovered. It starts with a plane-parallel flow as primary solution, which becomes unstable to two counter-propagating waves. It is followed by a tertiary three-dimensional flow in the form of wavy traveling waves. As the Grashof number is increased even further, a chaotically oscillating cellular pattern consisting of the pieces of broken waves arises. The formation of a structure in the form of the vertical rolls chaotically modulated along axes concludes this complicated picture.  相似文献   

18.
This study looks at MHD natural convection flow and heat transfer in a laterally heated enclosure with an off-centred partition. Governing equations in the form of vorticity–stream function formulation are solved using the polynomial differential quadrature (PDQ) method. Numerical results are obtained for various values of the partition location, Rayleigh, Prandtl and Hartmann numbers. The results indicate that magnetic field significantly suppresses flow, and thus heat transfer, especially for high Rayleigh number values. The results also show that the x-directional magnetic field is more effective in damping convection than the y-directional magnetic field, and the average heat transfer rate decreases with an increase in the distance of the partition from the hot wall. The average heat transfer rate decreases up to 80% if the partition is placed at the midpoint and an x-directional magnetic field is applied. The results also show that flow and heat transfer have little dependence on the Prandtl number.  相似文献   

19.
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.  相似文献   

20.
This work is focused on the numerical modeling of steady, laminar, heat and mass transfer by MHD mixed convection from a semi-infinite, isothermal, vertical and permeable surface immersed in a uniform porous medium in the presence of thermal radiation and Dufour and Soret effects. A mixed convection parameter for the entire range of free-forced-mixed convection is employed and the governing equations are transformed into non-similar equations. These equations are solved numerically by an efficient, implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in excellent agreement. A parametric study illustrating the influence of the thermal radiation coefficient, magnetic field, porous medium inertia parameter, concentration to thermal buoyancy ratio, and the Dufour and Soret numbers on the fluid velocity, temperature and concentration as well as the local Nusselt and the Sherwood numbers is conducted. The obtained results are shown graphically and the physical aspects of the problem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号