首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical procedure is proposed for the direct simultaneous determination in a single scan of Co, Cu, Fe, Ni and V in sediment pore waters by means of adsorptive cathodic stripping voltammetry (ACSV) with mixed ligands (DMG and catechol). Optimum conditions for the determination of these five elements were studied. Detection limits of the technique depended upon the reproducibility of the procedure blank, and were found to be 0.04 nM Co, 0.09 nM Cu, 1.29 nM Fe, 0.46 nM Ni and 2,52 nM V making the method suitable for the direct simultaneous determination of these five metals in pore waters, estuarine waters and probably coastal waters.  相似文献   

2.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

3.
Thiacalix[4]arenetetrasulfonate (TCAS) has been examined as a pre-column chelating reagent for the determination of trace metal ions by kinetic differentiation mode (KD) ion-pair reversed-phase high-performance liquid chromatography (HPLC) with spectrophotometric detection. Among 14 kinds of common metal ions tested here, viz. Al(III), Ca(II), Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), V(V), and Zn(II) ion, only Ni(II) ion was detected as the TCAS chelate in the HPLC separation stage in spite of TCAS forming the chelates with various metal ions except for Al(III), Ca(II), and Mg(II) at the pre-column chelation stage. The undetected metal-TCAS chelates seemed to be dissociated on an HPLC column where no added TCAS was present in the mobile phase because of their kinetic unstability. The calibration graph for Ni(II) ion gave a wide linear dynamic range (40-20,000 nM) with the very low detection limit (DL) (3σ base-line fluctuation) to be 5.4 nM (0.32 ng ml−1). The practical applicability of the KD-HPLC method with TCAS was demonstrated with the determination of trace Ni in coal fly ash.  相似文献   

4.
采用微波灰化技术消化原油样品,并使用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中Na、Mg、Ca、Fe、V、Ni和Cu的含量。探讨了原油样品中金属元素测定的称样量和微波灰化程序,并优化了仪器工作参数和实验条件。样品经微波灰化处理后,用盐酸溶解残渣,方法对Na、Mg、Ca、Fe、V、Ni和Cu元素的检出限分别为0.07、0.01、0.01、0.01、0.02、0.04和0.03mg/kg,回收率在84.5%~96.6%之间,相对标准偏差在2.1%~6.9%范围。方法简便、可靠,可用于原油中Na、Mg、Ca、Fe、V、Ni和Cu 7种金属元素的检测。  相似文献   

5.
Banica FG  Fogg AG  Moreira JC 《Talanta》1995,42(2):227-234
Oxidized glutathione (GSSG) can be determined after previous accumulation on the HMDE at E > -0.2 V (vs. the Ag AgCl reference electrode). GSH is formed during the accumulation, possibly by a mercury-ion-assisted hydrolytic disproportionation of GSSG. In the subsequent cathodic scan GSH is released and catalyses the reduction of nickel ion, giving a peak located at -0.6 V. This enables the determination of GSSG by differential-pulse cathodic stripping voltammetry at pH 7.0 in the phosphate acetate or MOPS buffer containing 0.5-1.0 mM Ni(II). The detection limit is 10 nM. The calibration graph is linear even in the presence of small amounts of human serum albumin, HSA. However, HSA increases the detection limit (20 nM for 3 x 10(-4)% HSA). Acetyl-cysteine in small excess or Cu(II) present as reagent impurity do not interfere. Glutathione, cysteine and similar compounds, which accumulate as mercury salts and form stable nickel complexes, will interfere. The method is put forward as a novel alternative stripping voltammetric method to those involving accumulation and determination as mercury or copper salts and complexes, in the knowledge that it may have advantages in particular analytical situations. In particular the method discriminates against compounds which accumulate as mercury salts but which do not form stable nickel complexes.  相似文献   

6.
Neutron activation analysis methods for the determination of impurities in zirconium cladding material and uranium oxide are described. Detection limits for the elements Al, Cd, Cr, Co, Cu, Hf, Fe, Mn, Ni, W and U in zirconium are below that required by the ASTM B 352-79 standard. The method has been tested on the NIST SRM 360a Zircaloy-2 from which the elements Na, Mg, Al, Ca, V, Cr, Fe, Co, Ni, Cu, Eu and U have been detected. The values for Cr, Fe, Ni and Cu are compared with the certified values. A method for the pre-irradiation separation of the elements Mg, Na, Al, K, Sc, Ca, V, Mn, Cr, Fe, Co, Cu, Zn, Rb, Zr, Cd, Cs, REE and Hf from uranium has been developed. A neutron activation analysis method for the determination of those elements in uranium is described. The method is tested by the analysis of the IAEA reference sample SR-54/64. The elements Al, Mn, V, Cu, Cr, Co, Ni and Fe have been detected and the results compared with the certified values.  相似文献   

7.
原油中微量金属元素的测定及聚类分析   总被引:1,自引:0,他引:1  
采用电感耦合等离子体质谱(ICP-MS)法测定了国内外18种原油样品中V、Ni、Cu等13种微量金属元素的含量.结果显示,方法的线性关系良好,相关系数r≥0.9995,相对标准偏差(RSD)<5.0%,方法加标回收率为95.2%~116.2%.不同原油样品以Ni/V数值为聚类变量进行聚类分析,结果发现,国外与国内以及国...  相似文献   

8.
《Electroanalysis》2006,18(6):579-585
A new sensitive electrochemical procedure is presented for the determination of Rutin based on the accumulation of Rutin onto the surface of hanging mercury drop electrode for 80 s. Then the preconcentrated Rutin‐complex was analyzed by cathodic stripping square‐wave voltammetry. The effect of various parameters such as pH, concentration of copper, accumulation potential, accumulation time and scan rate on the sensitivity were studied. The optimum conditions for determination of Rutin include pH 6.0, 6.0 ng mL?1 copper(II) concentration, accumulation potential of ?0.30 V and scan rate of 0.40 V s?1. Under the optimum conditions and for an accumulation time of 80 s, the measured peak current at about ?0.03 V is proportional to the concentration of Rutin over the range of 2.0–85.0 nM. The practical limit of detection is 0.5 nM. The relative standard deviations for six replicate analyses of 10 and 50 nM Rutin are 1.8% and 1.7%, respectively. The method was applied to the determination of Rutin in synthetic, tea, and pharmaceutical samples with satisfactory results. The diffusion coefficient, complex formation constant and number of electron transfer of Rutin–Cu(II) complex was also estimated.  相似文献   

9.
ICP-AES法测定1J22软磁材料中的锰、硅、镍、铜、钒   总被引:1,自引:0,他引:1  
用电感耦合等离子体发射光谱仪(ICP)测定软磁材料1J22中的锰、硅、镍、铜、钒.通过试验选择了适宜的测试条件,针对1J22软磁材料中常见元素对锰、硅、镍、铜、钒谱线的光谱干扰选择了合适的分析谱线,并进行了精密度和准确度试验.选用Mn 257. 610 nm、Si 251. 611 nm、Ni 351. 505 nm、Cu 224. 700 nm、V 292. 402 nm为分析线时.合成溶液的回收率为92. 0%~114. O%,RSD为0. 33%~7. 73%(n=6).本方法适合1J22软磁材料中锰、硅、镍、铜、钒元素的测定.  相似文献   

10.
Rain water samples collected at three different locations in Italy during 1999 were analysed for heavy metals determination. Results for V, Cr, Mn, Co, Cu, Cd, Sb, Pb, Al and Ni are reported in this paper. For most of the elements higher concentration values have been measured in the samples from Alpe Gera (rural site): only for Cd and V were the concentrations higher at Pisa. The total annual deposition (microg m(-2) y(-1)) shows a similar behaviour, with Alpe Gera being the location with highest total annual input for Cr, Mn, Co, and in particular for Cu, Sb, Pb and Al. The reason of the higher deposition at a rural site in comparison to a urban one (Milan) is not known: further experimental work and investigations are needed. Generally, no evident seasonal trends have been observed for the measured concentrations, while few correlations have been found among elements within the same station. Crustal contribution to total concentration varies from about 20% for V to less than 1% for Cu, Cd, Sb, Pb and Ni.  相似文献   

11.
Davis J  Vaughan DH  Stirling D  Nei L  Compton RG 《Talanta》2002,57(6):318-1051
The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. AgAgCl) with the response found to be linear over the range 50 nM to 1 μM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.  相似文献   

12.
Conditions for the separation by reversed-phase liquid chromatography (LC) of V(V), Cu(II), Co(III), Pd(II), Fe(III) and Ni(II) chelates with 2-(5-bromopyridylazo)-5-diethylaminophenol (5-Br-PADAP) were studied. Six species of metal chelates were separated successfully with methanol-acetonitrile-water (72:12:16, v/v/v) containing 0.13 M NaCl and 0.29 mM cetyltrimethylammonium bromide (pH 5.0) as the mobile phase on a Nucleosil C18 (5 μm) column (250 × 4 mm i.d.).The conditions of the determination of these metal chelates are discussed. A simple and rapid method for the determination of trace amounts of V(V), Cu(II), Co(III), Pd(II) and Ni(II) simultaneously by reversed-phase LC has been developed. The detection limits are 5 × 10?12, 1 × 10?10, 3 × 10?11, 5.3 × 10?9 and 2 × 10?10 g, respectively. The method is applied to the determination of these metals in natural waters and mineral samples.  相似文献   

13.
Three analytical methods, namely, inductively coupled plasma sector field mass spectrometry (ICP-SFMS); inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) and filter-furnace electrothermal atomic-absorption spectroscopy (FF-ET-AAS) for the determination of V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb in ground natural water samples were compared and evaluated for their capacity to provide reliable and precise results. Two certified reference materials (SLEW-3 Estuarine Water; SLRS-4 River Water) were analysed to prove that accurate results could be obtained by using all the listed methods with properly optimised parameters. The limit of detection (LOD) for V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb provided by the ICP-MS methods ranged from 0.001 to 0.05 µg L?1. Such LOD proved sufficient for the reliable determination of the listed elements in ground natural waters. However, the LOD of the FF-ET-AAS was approximately two orders of magnitude higher than that of ICP-MS, which made it impossible to quantify V, Mn, Ni, Mo and Pb. The effects of the usage of the collision cell mode in ICP-QMS and of the desolvation system Apex for ICP-SFMS to eliminate oxide ions levels were investigated. For all three analytical methods, the influence of the matrix effect on the results of the determination of the investigated elements using matrix model solution, external calibration and standard addition methods was evaluated. A comparison using a paired Student’s t-test between the results obtained by both ICP-MS methods for V, Mn, Ni, Cu, As, Sr, Mo, Cd and Pb concentrations in ground natural waters showed that there was no significant difference on a 95% confidence level. The precision of the results for ICP-SFMS, ICP-QMS and FF-ET-AAS varied between ~0.5 and 11; 2.5 and 12.5; 3 and 13.5%, respectively. Moreover, ICP-SFMS equipped with the desolvation system APEX proved a better choice for As, Cu and Mn analysis due to its better LOD (0.008, 0.03 and 0.02 µg L?1, respectively) and precision (Sr ≤ 5.0; 7.5; 9.0%, respectively) compared to ICP-QMS and FF-ET-AAS.  相似文献   

14.
依据光电发射光谱仪光源激发机理,结合钛合金的材料性能,选用火花放电激励光源和时间分解脉冲分布测光法,绘制钛合金中主要合金元素的工作曲线,对A l、V、Fe、S i、C、Mn、Cu、Mo、Sn、Zr、N i、Cr等元素进行光谱直接测定。测定结果与化学法测定结果基本一致,测定结果的相对标准偏差为0.72%~4.27%(n=11)。  相似文献   

15.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

16.
色谱分离ICP-AES法测定高纯度八氧化三铀中的13种微量杂质   总被引:1,自引:0,他引:1  
采用磷酸三丁酯(TBP)萃淋树脂色层分离铀,用电感耦合等离子体-原子发射光谱法测定分离后的离纯度铀氧化物的杂质元素Al、Ca、Cr、Cu、Fu、Mn、Mo、Ni、P、Ti、V、Zn、Zr,除Al、Fe、Mo外的其余10种元素的测定结果符合标准物质定值的要求。  相似文献   

17.
Summary The analytical performance of an on-line oxine-cellulose microcolumn preconcentration system coupled to simultaneous ICP was investigated. Different factors including the pH of the sample solution, the flow rates of sample loading and eluation, the acidity of eluent and different eluents were investigated and optimized. In comparison with continuous aspiration, the signal enhancement factors of eleven elements (Zn, Cu, Ni, V, Cr, Fe, Mn, Co, Pb, Cd and Al) were in the range of 6.4 to 13.5 for peak height (0.5 s) and 3.7 to 5.8 for peak area (15 s), respectively. The influences of matrix ions, such as Ca, Mg, Fe, Cu and NaCl were studied. Performance was demonstrated by simultaneous determination of seven (Zn, Cu, Ni, V, Cr, Fe, Mn) elements in a number of CRMs. Most results were satisfactory, except for iron and chromium. The possible reasons were discussed. Co, Pb, Cd and Al were not available in the simultaneous instrument. Therefore, only the analytical performance was measured for these elements by the sequential instrument.On leave from Shanghai Institute of Metallurgy, Academia Sinica, Shanghai, China 200050  相似文献   

18.
Huang  Shan  Lu  Shuangyan  Huang  Chusheng  Sheng  Jiarong  Su  Wei  Zhang  Lixia  Xiao  Qi 《Mikrochimica acta》2015,182(15):2529-2539

We describe a square wave anodic stripping voltammetric (SWASV) platform for the determination of Cu(II). It is based on the use of amino-reduced graphene oxide (NH2-rGO) and β-cyclodextrin (β-CD) that were self-assembled on the surface of a glassy carbon electrode (GCE). The hydrophilicity and electrochemical performance of the resulting modified GCE were investigated by measurement of static contact angles, cyclic voltammetry and electrochemical impedance spectroscopy. Cu(II) was reduced at −1.1 V and then reoxidized at −0.012 V. Under optimum experimental conditions, the modified GCE exhibited excellent SWASV response in that the stripping peak currents (when sweeping between −0.3 and +0.25 V) depends on the concentration of Cu(II) in the 30 nM to 100 μM range. The limit of detection is 2.8 nM (at 3σ/slope). The modified GCE displaying good reproducibility, is stable, highly sensitive and selective. It was successfully applied to the determination of Cu(II) in synthetic and real water samples. The fast electron transfer rate and simple preparation of the NH2-rGO/β-CD composite makes it a promising electrode material for applications in sensing of heavy metal ions.

Amino-modified rGO and β-cyclodextrin form an attractive material for use in an electrochemical platform for highly sensitive and selective determination of Cu(II).

  相似文献   

19.
Farias PA  Ohara AK  Takase I  Ferreira SL  Gold JS 《Talanta》1993,40(8):1167-1171
A new method is described for the determination of Ni based on the cathodic adsorptive stripping of Ni(II) complexed with hydroxynaphthol blue (HNB) at a static mercury drop electrode. Optimal conditions were found to be: accumulation potential -0.50 V (vs. Ag/AgCl); final potential -1.10 V; accumulation time 50 sec; scan rate 200 mV/sec; linear scan mode; filter 0.1 sec; supporting electrolyte acetic acid/acetate (0.25M, pH = 6.0) and concentration of HNB 3.3 x 10(-5)M. The response of the system was found to be linear in a range of Ni concentrations from 25 ppb to the detection limit. The detection limit was found to be 1.7 nM (0.10 ppb) with 2 mins of accumulation time. The effect of various potential interferences (including a variety of cations, anions and organic surfactants) were also studied. With the exception of Co, at less than equimolar concentrations no significant interferences were observed. Al was found to interfere at high concentrations with respect to Ni, but Al concentrations up to 1000 ppb may be masked by sodium citrate or sodium fluoride. The utility of the method is demonstrated by the recovery of Ni in a doped sample of commercial mineral water.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号