首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

2.
Bis(diisopropyl) thiophosphoryl disulfide (DIPDIS) being a rubber accelerator has a definite role as a coupling agent in the silica filled polychloroprene rubber with ethylene propylene diene rubber (CR‐EPDM) blends. Diethylene glycol can further improve the beneficial effect of DIPDIS in silica filled CR‐EPDM blends. Two‐stage vulcanization technique further improves the physical properties of silica filled CR‐EPDM blends. The results have been compared with non‐reinforcing calcium carbonate filled systems. Scanning electron microscopy (SEM) studies further indicate the coherency and homogeneity in the silica filled CR‐EPDM blend vulcanizates obtained from this two‐stage process. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
范天博  陈思  姜宇  蔡勋  亢萍  李莉  张利  刘云义 《应用化学》2019,36(7):790-797
重钙粉作为填充剂被广泛应用于橡胶加工过程,但由于其表面具有极性,分散性较差,导致与橡胶材料界面结合较差,影响了橡胶产品的抗拉强度、断裂伸长率等力学性能。 本文采用沉淀法,在CaCl2-H2O-NH3-CO2体系中生成碳酸钙直接结晶于重钙粉颗粒表面,实现对重钙粉的表面包覆,将n(CaCl2):n(重钙粉)=1:100、5:100、10:100的包覆重钙粉填充到天然橡胶和再生胶中,橡胶的力学性能与填充未包覆重钙粉的橡胶相比有了一定的提升。 通过比较,在填充量较大(8.5%、15%)时,包覆重钙粉橡胶产品在硬度、定伸应力等力学性能上要好于轻钙粉橡胶产品;在填充量(5%、8.5%)时,包覆重钙粉橡胶产品的抗拉强度、断裂伸长率接近于白炭黑,硬度高于白炭黑橡胶产品。  相似文献   

4.
Silica is used as a reinforcing filler in the rubber product such as a tire. When silica contents increased in the composite, deterioration of the processability and silica dispersion in silica-rubber composites cannot be overcome only by adding a silane coupling agent. Therefore, silica wet-masterbatch (WMB) technology is considered for manufacturing highly silica filled composites. Herein, we investigated silica dispersion, cure behavior, mechanical properties, abrasion characteristics, and viscoelastic properties of 3 types of WMB blend composites. Up to 82% improvement in silica dispersion was determined by the Payne effect and confirmed by atomic-force microscopy. The tensile strength and elongation at break increased and tan δ at 60 °C decreased by improving silica dispersion. The silica WMB is suitable for manufacturing highly silica filled composites.  相似文献   

5.
本文研究了硅烷偶联剂原位改性白炭黑对溶聚丁苯橡胶(SSBR)性能的影响,结果表明,通过哈克转矩流变仪对含有偶联剂的SSBR/白炭黑混炼胶进行原位热处理后可明显减弱混炼胶的Payne效应,改善白炭黑在橡胶基体中的分散.原位热处理方法能够明显提高硫化胶的300%定伸应力,降低动态压缩温升,同时可使硫化胶在0℃附近具有较高的损耗因子(tanδ),60℃附近具有较低的tanδ.对不同聚合方式得到的丁苯橡胶,即溶聚丁苯橡胶与乳聚丁苯橡胶(ESBR)/白炭黑复合材料的力学性能及动态力学性能进行了研究,结果表明,白炭黑在SSBR2305中分散效果优于在ESBR1502中;采用偶联剂原位改性白炭黑可以使SSBR2305硫化胶获得与ESBR1502硫化胶相当的物理机械性能,更理想的动态力学性能,从而得到力学性能、抗湿滑性、滚动阻力及耐磨性更加均衡的理想轮胎材料.通过对具有不同偶联效率的SSBR/白炭黑体系的微观结构与性能研究发现,随偶联效率的增加,其结合橡胶含量增加,Payne效应减弱;高偶联效率的S-SBR具有较低的动态压缩温升及较好的耐磨性.  相似文献   

6.
Rubber compounds are reinforced with fillers such as carbon black and silica. In general, filled rubber compounds shows smooth rheological behavior and mechanical properties. Variation in rheological behavior and mechanical properties was studied in terms of the filler composition using natural rubber compounds filled with both carbon black and silica CB/Si = 0/60, 20/40, 30/30, 40/20 and 60/0 phr (parts per hundred rubber is parts of any non-rubbery material per hundred parts of raw gum elastomer (rubbery material)). The rheological behaviour can be showed in measurement of Mooney viscosity and cure time. The Mooney viscosity of rubber compounds increase with the increasing the carbon black in the compounds. The compound filled with CB/Si of 30/30 and 60/0 showed abnormal rheological behaviour in which the cure time decreased suddenly and the increased at certain ratio during the measurement. The mechanical properties such as hardness, abrasion resistance and tensile stress at 300% elongation were studied. In the hardness and abrasion resistance measurement, the higher ratio CB/Si decrease contribution of silica, which resulting smaller of hardness value. Ratio CB/Si 40/20 gives an optimum filler blended. It is also clearly understood that higher abrasion resistance mainly due to the lower hardness value under the same condition. The tensile stress at 300% elongation of rubber compound increased with the increasing carbon black filler.  相似文献   

7.
Grinding chrysotile under controlled conditions results in microfibers with the dimensions of carbon black or silica agglomerates used in the reinforcement of rubber. The mechanical properties of SBR reinforced with ground asbestos are similar to those of SBR filled with a silica of equivalent surface area.  相似文献   

8.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
傅强 《高分子科学》2008,(4):495-500
Hydrophobic nano silica sol(HNSS)was incorporated into polyvinylmethylsiloxane to prepare reinforced high- temperature vulcanized(HTV)silicone rubber.HTV silicone rubber filled with 40 phr HNSS showed excellent mechanical and optical properties:the tensile strength reached 11.7 MPa and the optical transmittance was higher than 90%.Possible reasons for reinforcement and transparency were discussed on the basis of the bound rubber percentage,total crosslink density,and SEM analysis.Our work suggests that H...  相似文献   

10.
Rubber compounds are filled with reinforcing fillers to improve their physical properties. Carbon black and silica have different surface chemistries to each other. Differences in properties of carbon black‐ and silica‐reinforced styrene‐butadiene rubber (SBR) compounds were studied. Variation of properties of carbon black‐ or silica‐filled compounds with the filler content was also investigated. The silica‐filled compounds without any coupling agent and dispering agent were prepared to investigate the influence of polar materials‐adsorption on the silica surface. Viscosity and crosslink density increased with increase of the filler content. Hardness, modulus, tensile strength, and wear property were improved more and more by increasing the filler content. Viscosity of the silica‐filled compound was higher than that of the carbon black‐filled one. Cure rate of the silica‐filled compound became slower as the filler content increased, while that of the carbon black‐filled one became faster. Difference in properties between the carbon black‐ and silica‐filled compounds were explained by the poor silica dispersion and the adsorption of cure accelerator on the silica surface. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
橡胶的填料问题一直是人们的研究热点,针对炭黑和白炭黑在橡胶生产中存在的污染问题,本文选用成分结构与白炭黑类似的硅藻土来填充各种橡胶。首先对硅藻土进行了改性,并对不同改性剂改性硅藻土用于填充橡胶进行了研究。结果表明2.5份偶联剂Si69的改性效果最佳。通过机械共混法制备了改性硅藻土/橡胶纳米复合材料,通过力学性能测试确定了比较适合硅藻土填充的橡胶是氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。绿色环保且价格低廉的硅藻土可以替代白炭黑增强填充氟橡胶、三元乙丙橡胶和丙烯酸酯橡胶。  相似文献   

13.
The network formed by fillers has great influence on the mechanical properties of rubber materials. To understand the formation of network by carbon black,silica,and carbon black/silica mixing fillers in rubber and its influence on the properties of rubber,isoprene rubber/filler composites with different filler loadings are prepared and their micromorphology,rheological and tensile properties are investigated. It is found that the dispersion of fillers is better in rubber after cure than that in rubber before cure for all three rubber systems,and the filler size of silica is smaller than that of carbon black,but the aggregation is more severe in silica filled rubber system. In mixed filler system,the two fillers tend to aggregate separately, leading to the low modulus at small strain than that in single filler system. With the increase of the filler loading,the tensile strength increases first and then decreases,the elongation at break decreases,and the temperature rise in compression flexometer tests increases. Moreover,the temperature rise in mixed filler system is higher than that in single filler system at high filler loading. © 2022, Science Press (China). All rights reserved.  相似文献   

14.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Silica particles were generated and grown in situ by sol–gel method into rubber blends comprised of natural rubber (NR) and acrylonitrile butadiene rubber (NBR) at various blend ratios. Silica formed into rubber matrix was amorphous in nature. Amount of in situ silica increased with increase in natural rubber proportion in the blends during the sol–gel process. Morphology studies showed that the generated in situ silica were nanoparticles of different shapes and sizes mostly grown into the NR phase of the blends. In situ silica filled NR/NBR blend composites showed improvement in the mechanical and dynamic mechanical behaviors in comparison to those of the unfilled and externally filled NR/NBR blend composites. For the NR/NBR blend at 40/60 composition, in particular, the improvement was appreciable where size and dispersion of the silica particles into the rubber matrix were found to be more uniform. Dynamic mechanical analysis revealed a strong rubber–in situ silica interaction as indicated by a positive shift of the glass transition temperature of both the rubber phases in the blends.  相似文献   

16.
Results of studies are presented on effect of new model compounds, applied to modify precipitated silica, on reinforcing of butadiene-styrene rubber vulcanizates filled with modified silica. Precipitated silica applied for the pur pose has been obtained according to our own procedure. Estimation of heats of immersion, mainly in benzene, has documented effect of model compounds involving hydrophobization of silica surface.For comparative reasons, results of strength tests have also been presented on vulcanizates of butadiene-styrene rubber filled with silica modified with a recognized coupling agent-mercaptosilane A-189.  相似文献   

17.
采用阴离子溶液聚合法合成了低分子量3,4-聚异戊二烯(LPI), 并对其进行改性, 制备了硅氧烷改性的低分子量3,4-聚异戊二烯(MLPI), 将其应用于白炭黑补强的溶聚丁苯橡胶(SSBR)复合材料, 探究了端基改性物LPI-丙基甲基二甲氧基硅烷(LPI-CMDS)、 LPI-丙基三甲氧基硅烷(LPI-CTMS)、 LPI-丙基三乙氧基硅烷(LPI-CTES)和接枝改性物3-巯丙基三乙氧基硅烷接枝改性LPI(LPI-g-MTS)对SSBR复合材料中白炭黑的分散以及硫化胶性能的影响. 混炼胶的应变扫描和结合胶含量分析结果表明, MLPI增强了填料与聚合物之间的相互作用, 改善了白炭黑在复合材料中的分散, 其中LPI-g-MTS因活性位点多, 效果最佳; 与填充LPI的复合材料相比, 硫化胶的物理机械性能, 尤其是填充LPI-g-MTS后硫化胶的300%定伸应力和拉伸强度分别提升了89.66%和27.15%, 这为改善白炭黑在非极性橡胶中的分散提供了一条新途径.  相似文献   

18.
Surface modification of silica by acetylene plasma polymerization is applied in order to improve the dispersion in and compatibility with single rubbers and their blends. Silica, used as a reinforcing filler for elastomers, is coated with a polyacetylene (PA) film under vacuum conditions. Water penetration measurements show a change in surface energy due to the PA‐film deposition. The weight loss measured by thermo‐gravimetric analysis (TGA) is higher for the PA‐coated silica compared to the untreated filler, confirming the deposition of the PA film on the silica surface. Time of flight‐secondary ion mass spectrometry (ToF‐SIMS) shows the well‐defined PA cluster peaks in the high mass region. Scanning electron microscopy (SEM) measurements show silica aggregates, coalesced by the coating with smooth and uniform surfaces, but without significant change in specific surface area. Elemental analysis by energy dispersive X‐ray spectroscopy (EDX) measurements also confirms the deposition of the polymeric film on the silica surface, as the carbon content is increased. The performance of single polymers and their incompatible blends based on S‐SBR and EPDM, filled with untreated, PA‐ and silane‐treated silica, is investigated by measurements of the bound rubber content, weight loss related to bound rubber, cure kinetics, reinforcement parameter, Payne effect, and mechanical properties. The PA‐ and silane‐modified silica‐filled pure S‐SBR and EPDM samples show a lower filler–filler networking compared to the unmodified silica‐filled elastomers. Decrease in the reinforcement parameter (αF) for the plasma‐polymerized silica‐filled samples also proves a better dispersion compared to silane‐modified and untreated silica‐filled samples. On the other hand, the PA‐silica‐filled samples show a higher bound rubber content due to stronger filler–polymer interactions. Finally, the PA‐silica‐filled pure EPDM and S‐SBR/EPDM blends show high tensile strength and elongation at break values, considered to be the result of best dispersion and compatibilization with EPDM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A promoter of adhesion of a rubber to a metal cord based on precipitated silica modified by cobalt was developed. The analysis of its qualitative and quantitative composition was carried out. The effect of the obtained compounds on the technological and physico-mechanical properties of filled elastomeric compositions based on synthetic polyisoprene rubber and on the properties of metal cord–rubber systems was studied. It was shown that application of modified precipitated silica allows both making elastomeric compositions cheaper and improving their adhesive properties.  相似文献   

20.
《European Polymer Journal》2013,49(10):3199-3209
An in-rubber study of the interaction of silica with proteins present in natural rubber show that the latter compete with the silane coupling agent during the silanisation reaction; the presence of proteins makes the silane less efficient for improving dispersion and filler–polymer coupling, and thus influences the final properties of the rubber negatively. Furthermore, the protein content influences the rheological properties as well as filler–filler and filler–polymer interactions. Stress strain properties also vary with protein content, as do dynamic properties. With high amounts of proteins present in natural rubber, the interactions between proteins and silica are able to disrupt the silica–silica network and improve silica dispersion. High amounts of proteins reduce the thermal sensitivity of the filler–polymer network formation. The effect of proteins is most pronounced when no silane is used, but they are not able to replace a coupling agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号