首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
为了详细地探究NaLuF4纳米晶的生长过程,利用自主研发的可以精确控制实验参数的自动纳米合成仪制备了不同系列的NaLuF4:Yb3+/Tm3+纳米材料。对不同反应温度下(285,295,305℃)制备的样品进行物相分析,发现随着反应时间的增加,NaLuF4纳米晶均遵循相似的生长规律,即α-相→α-相+β-相→均匀的β-相→聚集的β-相。在不同温度下,均有一个时间段可以获得小尺寸(小于50 nm)、单分散、粒径分布窄的纯β-NaLuF4纳米晶。另外,测试了不同温度下制备的β-NaLuF4:Yb3+/Tm3+纳米材料的上转换发射光谱,结果表明随着反应温度的升高,样品的发光先增强后减弱。出现这种光谱规律可能是受晶体尺寸和结晶性两方面因素的影响。此外,样品在紫外区的高阶多光子发光很强。例如,361 nm发射峰强度大约是800 nm发射峰强度的2倍。  相似文献   

2.
于潘龙  田莲花 《发光学报》2018,39(9):1200-1206
采用高温固相法制备了颜色可调的NaTaOGeO4∶Tb3+,Mn2+荧光粉,并研究了其发光特性以及能量传递机理。在244 nm激发下,NaTaOGeO4∶Tb3+的发射光谱的发射峰分别位于380,413,436,492,544 nm,分别属于Tb3+5D37FJ5D47FJ(J=6,5,4)能级跃迁,为蓝光和绿光发射。在280 nm波长激发下,在492 nm和544 nm处有较强的发射峰,分别属于Tb3+5D47F65D47F5能级跃迁,为绿光发射。在248 nm波长激发下,NaTaOGeO4∶Mn2+的发射光谱由位于576 nm处的宽带组成,属于Mn2+4T16A1能级跃迁。当在NaTaOGeO4∶Tb3+荧光粉中共掺杂Mn2+时,可以同时观察到Mn2+和Tb3+的发射峰,通过改变浓度掺杂比,可以得到颜色可调控的荧光粉。  相似文献   

3.
采用液相沉淀法合成了铽单掺杂,铕单掺杂,铽、铕双掺杂的硅酸锶发光材料。其结构经X-射线衍射表征。研究了合成样品的激发、发光光谱。研究结果表明:在254nm波长紫外光激发下,SrSiO3:0.04Eu3+的发光光谱中出现4个Eu3+的发光峰,分别为Eu3+5D07F1(588、590nm)、5D0→F2(609nm)、5D07F3(626nm)、5D04F4(651nm)跃迁峰;SrSiO3:0.04Tb3+的发光光谱中出现4个Tb3+的发光峰,分别为Tb3+5D4→F6(488nm)、5D47F5(541、548nm)、5D47F4(584nm)跃迁峰;SrSiO3:0.04Tb3+,0.04Eu3+发光体系中,Tb3+的共掺杂显著增强了Eu3+的特征发射,存在Tb3+→Eu3+的能量传递现象,结果表明有Eu3+和Tb3+两个发光中心。  相似文献   

4.
采用熔融法制备了Tb3+掺杂的Bi2O3-B2O3系统玻璃,使用激发、发射及拉曼光谱分析了光学碱度与玻璃结构及发光性能的关系,同时绘制了Tb3+、Bi3+和Bi2+的能级图。研究结果表明:Tb3+掺杂的Bi2O3-B2O3玻璃由[BO3]、[BiO3]、[BO4]及[BiO6]共同组成,且随着光学碱度由0.63增加到0.93,玻璃的结构逐渐疏松。高的光学碱度使部分Bi3+变为Bi2+,发出571 nm(2P3/2(2)2P1/2)的光,Bi3+→Tb3+的能量降低。在光学碱度及Tb3+、Bi3+和Bi2+离子的共同作用下,随着光学碱度的提高,玻璃的发光颜色由黄绿色变为白色。  相似文献   

5.
采用高温熔融法制备了Ce3+/Tb3+/Sm3+掺杂的CaO-B2O3-SiO2(CBS)发光玻璃。通过傅利叶红外光谱仪、荧光光谱仪表征了该系列发光玻璃的微观结构和发光性质,并对Ce3+到Tb3+、Ce3+到Sm3+之间的能量传递机制进行了研究。结果表明,在339,378,407 nm激发下,单掺Ce3+、Tb3+和Sm3+的CBS玻璃分别发射紫蓝光、绿光和红光,恰好符合混合合成白光的条件。Ce3+/Tb3+和Ce3+/Sm3+双掺CBS玻璃的发射光谱以及Ce3+衰减寿命的变化证实了Ce3+→Tb3+和Ce3+→Sm3+之间存在能量传递,随Tb3+和Sm3+浓度增加,Ce3+的寿命减小,且传递效率由5.4%和5.7%分别增加至24.0%和27.1%。调节3种稀土离子的掺杂浓度并选择合适的激发波长,实现了发光颜色可调,并最终获得白光发射。  相似文献   

6.
采用高温熔融法制备了Tb3+单掺硼酸盐、硅酸盐和磷酸盐荧光玻璃和相应的玻璃基质。根据紫外-可见透射光谱计算了Tb3+在不同基质中从7F65D35D4能级的实验振子强度,解释了不同基质中Tb3+发射光谱的变化原因。结果表明:因为对称性差,在磷酸盐玻璃基质中,Tb3+在542 nm和585 nm处的发射峰有劈裂现象。在硼酸盐和硅酸盐基质中,Tb3+5D3能级上的粒子通过交叉弛豫过程被倒空并转移到5D4能级,故5D3能级发光(413 nm和436 nm)不明显;在磷酸盐基质中,Tb3+5D3能级上的粒子数较少,没有交叉弛豫产生,故5D3能级发光最强。在3种基质中,Tb3+5D4能级发射的特征峰489,542,585,620 nm的强度顺序是硼酸盐>硅酸盐>磷酸盐,与Tb3+在不同基质中从7F65D4能级的实验振子强度顺序一致。  相似文献   

7.
利用水热法合成了α-SrHPO4:RE(RE=Eu3+,Tb3+)纳米磷光体,并研究了材料的形貌与光谱特性。α-SrHPO4纳米粒子为长度90~200 nm的棒状结构,直径为24~36 nm。Eu3+和Tb3+的掺杂均会降低α-SrHPO4的结晶度,并减小其长径比。α-Sr0.97HPO4:0.03Eu3+在395 nm近紫外光的激发下,存在分别由5D07F15D07F12跃迁引起的590 nm和614 nm发射峰,最终发射橙红光。α-Sr0.97HPO4:0.03Tb3+在217 nm近紫外光的激发下,存在由5D47F5跃迁引起的543 nm绿光发射。  相似文献   

8.
利用温和的溶剂热方法合成了具有上转换发光性能的Yb3+-Tm3+和Yb3+-Er3+共掺的纳米NaYGdF4。在该体系中,通过调节Gd3+在基质中的掺杂量可以有效地控制产物的相变、尺寸以及上转换荧光性能。XRD和TEM分析结果表明,Gd3+的掺入在促进NaYF4纳米颗粒由立方相到六方相转变的同时有助于减小其尺寸。上转换光谱研究表明,在Yb3+-Tm3+和Yb3+-Er3+共掺体系中,可通过优化Gd3+的掺杂量来有效提高产物的上转换荧光强度。同时,通过研究Tm3+和Er3+在不同可见光波段的发光强度与泵浦功率的关系探讨了上转换发光的机制。  相似文献   

9.
利用XRD、VUV及UV光谱等方法对Ce3+、Tb3+离子掺杂以及Ce3+、Tb3+离子共掺的3种BaCa2(BO3)2荧光粉的相纯度、发光性质、浓度猝灭现象进行研究。结果表明:3种荧光粉在VUV波段有较好的吸收,基质吸收带位于140~190 nm范围。Ce3+在BaCa2(BO3)2的最低4f5d跃迁带位置在360 nm附近,其5d→2FJ(J=5/2, 7/2)发射峰分别位于393,424 nm。Tb3+掺杂的样品在172 nm激发下的发射光谱由4个窄带组成,分别对应5D47FJ(J=3,4,5,6)的跃迁,其中占主导位置的是5D47F5的跃迁,大约位于543 nm处,主要为绿光发射。在Ce3+,Tb3+离子共掺杂的BaCa2(BO3)2光谱中,观察到Ce3+-Tb3+离子间有能量传递。  相似文献   

10.
Eu3+或Tb3+掺杂Y2O3纳米材料紫外激发光谱   总被引:2,自引:0,他引:2       下载免费PDF全文
采用燃烧法制备了不同Ln3+(Ln=Eu或Tb)掺杂浓度和不同平均粒径的Y2O3:Ln纳米晶体粉末和体材料样品。研究发现随着粒径的减小,Y2O3:Eu电荷迁移带的位置发生红移;并且,由于存在于近表面低结晶度环境中的Eu3+数量的增加,小粒径样品(5nm)的电荷迁移带还向长波方向发生了明显的展宽。实验中还观察到Y2O3:Tb纳米晶激发谱中4f5d(4f8→4f75d1)跃迁吸收对应激发峰(带)的谱线形状随样品粒径变化存在较大的差异,这是由于Tb3+存在于近表面的低结晶度和颗粒内部的高结晶度两种不同环境中,Tb3+的4f5d跃迁在两种环境中对应的吸收峰位置不同,当样品粒径发生变化时Tb3+处于两种环境中的比例随之变化,造成相应吸收跃迁对应的激发峰(带)强度发生变化,并改变了激发谱的谱线形状。实验中还发现,随着Tb3+(或Eu3+)浓度的减小,Y2O3基质激子跃迁吸收的激发峰对比4f5d跃迁(或电荷迁移带)激发峰的相对强度随之增强。  相似文献   

11.
Ce3+,Tb3+共掺BaYF5微晶玻璃的光学特性   总被引:2,自引:2,他引:0       下载免费PDF全文
采用高温熔融法制备了一种新型的Ce3 +/Tb3+共掺BaYF5微晶玻璃.测试了微晶玻璃的X射线衍射图(XRD)谱、激发光普和发射光谱.研究发现:660℃热处理2h后的玻璃基质中析出BaYF5纳米晶相,根据XRD结果用Scherrer公式计算得到晶粒大小约为27 nm;在近紫外光(338 nm)激发下,观察到BaYF5...  相似文献   

12.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

13.
刘春旭  王鹏程  骆永石  王立军 《发光学报》2011,32(11):1120-1125
观测到一种以Tb3+-Er3+进行光谱转换的量子剪裁现象。一个高能紫外光子(Tb3+7F65L1)被量子剪裁成两个低能光子:一个是近红外光子(Er3+4I9/24I15/2),另一个是蓝色光子(Tb3+5D47F6),它们两个 都可以被GaAs太阳能电池有效地吸收。量子剪裁效率高达188%,接近理论极限的200%。从Tb3+(5L15D4) 到Er3+(4I15/24I9/2)的能量传递的能量失配是237 cm-1,比NaYF4中的声子能400 cm-1小,能量传递是近共振的。Tb3+施主间的能量迁移可以近似地用扩散模型处理, 从Tb3+-Er3+对之间能量传递的初始过程发现,偶极-偶极相互作用占主导地位。  相似文献   

14.
Ca3La(BO3)3:Tb3+的合成与发光性质   总被引:2,自引:0,他引:2       下载免费PDF全文
高温固相反应法合成了Ca3La(BO3)3:Tb3+光致发光材料。利用扫描电镜和激光衍射分析仪测定了样品的晶粒形貌及粒径大小分布,利用荧光分光光度计研究了Ca3La(BO3)3:Tb3+的光致发光特性。确定了在Ca3La(BO3)3基质中Tb3+离子浓度对其发光强度的影响及其自身浓度猝灭机理;探讨了助熔剂Li2CO3、敏化剂Ce3+离子的加入对荧光粉发光强度的影响。  相似文献   

15.
崔祥水  陈文哲 《发光学报》2015,36(4):400-407
采用凝胶法分别制备出4.5ZnO-5.5Al2O3-90SiO2(ZAS)以及ZAS[DK]:RE3+ (RE=Eu,Tb,Ce) 透明微晶玻璃。利用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光光谱仪(PL)等测试手段,研究了稀土离子掺杂浓度对ZAS微晶玻璃的结构和发光性能的影响。XRD结果表明,ZAS[DK]:RE3+ (RE=Eu,Tb,Ce)微晶玻璃包含ZnAl2O4晶相和SiO2非晶相,ZnAl2O4平均晶粒尺寸约为30 nm,稀土离子的掺杂没有显著改变原来的ZnAl2O4晶体结构。TEM结果表明,900 ℃时ZnAl2O4从ZAS体系中析出。PL光谱显示,Eu3+ 存在 5D07F2跃迁,ZAS[DK]:Eu3+在611 nm 处发出强烈的红色光;由于Tb3+5D47F5 跃迁,ZAS[DK]:Tb3+在541 nm 处发出明亮的绿色光;ZAS[DK]:Ce3+ 在381 nm处显示了蓝光发射,对应于Ce3+ 的5d→4f 轨道跃迁。ZAS[DK]:RE3+ (RE=Eu, Tb, Ce)的PL发射光谱存在着浓度猝灭现象,Eu3+、Tb3+ 和Ce3+的最佳单掺杂摩尔分数分别为20%、20%和3%。CIE色度图表明,ZAS[DK]: RE3+ (RE=Eu,Tb,Ce)的色坐标分别位于红光、绿光和蓝光区域。实验结果表明,ZAS:RE3+ (RE=Eu,Tb,Ce) 微晶玻璃是一种良好的可用于全色显示的白光LED材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号