首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The adsorption of ethene, propene, 1-butene, trans-2-butene, and isobutene on phosphotungstic acid has been characterized by density functional theory (DFT) calculations and microcalorimetric experiments. The DFT-calculated chemisorption energies to form the corresponding alkoxides for ethene, propene, 1-butene, trans-2-butene, and isobutene were -86.8, -90.3, -102.6, -79.9, and -91.4 kJ mol(-1), respectively (for their most-favorable binding modes). The relative chemisorption energies to form the alkoxides are dictated by the strength of interaction of the acidic proton with the carbon atom of the double bond that becomes protonated. The activation barrier for chemisorption was greatest for alkenes with primary (1 degrees) carbenium-like transition states followed by secondary (2 degrees) and tertiary (3 degrees) transition states. The adsorption enthalpy established from microcalorimetric experiments with propene and isobutene was approximately -100 kJ mol(-1), which is close to the DFT-calculated values. Chemisorption of ethene on phosphotungstic acid during microcalorimetric experiments was minimal, presumably because of the large activation barrier associated with a 1 degrees carbenium-like transition state. The results from this study are compared with those in the literature for the adsorption of alkenes on zeolites, which have a similar adsorption mechanism. Our results suggest that alkene adsorption is stronger on phosphotungstic acid than on zeolites, as supported by the more exothermic chemisorption energies. Additionally, activation barriers for alkene adsorption are lower over phosphotungstic acid than over zeolites.  相似文献   

2.
Reported herein are the results of an investigation into the effect of the extended framework of the zeolite ZSM‐5 on the reaction energetics and structures of (a) the physisorbed complex formed between the zeolite and six alkenes, (b) the corresponding chemisorbed alkoxide intermediate and (c) the transition states (TS) connecting the two. For this, quantum mechanical (QM) simulations of ZSM‐5 in the presence and absence of the zeolite framework have been employed. A 46T density functional theory (DFT) cluster model and a 3T:46T DFT:UFF ONIOM model are used to represent the former scenario and a simple 3T DFT cluster model for the latter. The structural implications of neglecting the zeolite framework have been rigorously compared using the multivariate statistical method principal components analysis (PCA). This method allows one to assess the correlated nature of the changes in structure along the reaction coordinate, for multiple different alkenes, in a facile, reliable way. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
In this study the results from a series of calculations are reported that probe the influence of the QM cluster size and the extended framework treatment in ONIOM calculations. This is done by comparing the differences in the structures and energetics obtained during simulations of cistrans isomerisation of butene in H-ZSM-5 at varying level of accuracy. Seven different models have been employed; 3T, 5T and 10T DFT cluster models, and to more effectively encode the extended framework of ZSM-5; 3T:46T, 5T:46T, 10T:46T DFT:MM ONIOM models, and a 46T DFT cluster model. The results show that irrespective of the exact QM cluster size, relatively small gasphase clusters show clear limitations due to the neglect of the extended framework. In particular, the structural and electronic implications of using the different zeolite models have been rigorously assessed using the multivariate statistical method principal components analysis (PCA). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Recent experimental work on the methanol-to-hydrocarbons (MTH) reaction in zeolite H-Beta suggests that the heptamethylbenzenium (heptaMB+) cation is an important intermediate. We have carried out quantum chemical calculations to investigate intramolecular isomerization reactions and eliminations of small alkenes such as ethene, propene, and isobutene from heptaMB+ isomers. Two types of reaction paths have been investigated for the alkene formation: One starting with an initial ring contraction, and one starting with an initial ring expansion of the heptaMB+ ion. The reaction starting with an initial ring contraction leads to a bicyclic species that may split off propene or, after further isomerizations, isobutene. Expansion to a seven-membered ring may, via further isomerizations, lead to formation of ethyl and isopropyl groups that may in turn be split off as ethene and propene. The calculations have been carried out at the B3LYP/cc-pVTZ//B3LYP/6-311G(d,p) level of theory with zero point energy corrections. Comparisons with experimental data are made where possible.  相似文献   

5.
镧改性提高ZSM-5分子筛水热稳定性   总被引:1,自引:0,他引:1  
基于12T 团簇模型, 利用密度泛函理论(DFT)研究了ZSM-5 分子筛的水解脱铝机理以及镧改性提高ZSM-5分子筛水热稳定性的机理. 对未改性分子筛水解脱铝机理的研究表明, 首先是第一个水分子吸附在分子筛表面的酸性位上, 对分子筛的Al—O键起弱化作用, 使Al—O键伸长; 接着第二个水分子吸附到分子筛表面,分别与第一个水分子和分子筛骨架形成氢键, 进一步弱化与其最邻近的Al—O键, 并引致该键断裂. 同样, 其它的三个Al—O键也被削弱并逐一断裂, 从而发生分子筛水解脱铝现象. 引入的镧物种与分子筛骨架的四个O原子成键, 将铝包埋, 增加了分子筛孔壁厚度, 增大了水分子攻击铝的空间位阻, 抑制了水分子对Al—O键的弱化, 从而延缓Al—O键的断裂, 提高分子筛的水热稳定性. 计算的水分子吸附能和水解能进一步证实镧的引入提高了ZSM-5分子筛的水热稳定性.  相似文献   

6.
应用密度泛函理论(DFT), 采用5T簇模型来模拟分子筛催化剂的酸性位, 在B3LYP/6-311+G(3df, 2p)的条件下通过理论计算研究了乙烯在酸性分子筛上的二聚反应. 对反应各驻点进行了全局优化, 经过零点能校正后, 计算得出乙烯二聚反应的活化能. 研究表明, 乙烯在分子筛上的二聚反应分三步进行: 单个乙烯分子化学吸附→第二个乙烯分子的物理吸附→两乙烯分子二聚反应. 乙烯化学吸附生成的烷氧化合物与物理吸附的乙烯分子发生二聚反应生成新的C—C键同时生成新的烷氧化合物. 计算得到的乙烯化学吸附和二聚反应的反应能垒分别为108和149 kJ·mol-1. 反应的逆过程也就是1-丁烯在酸性分子筛表面的1-丁基烷氧化合物发生β分裂反应, 计算所得相应的1-丁烯β分裂反应的能垒为217 kJ·mol-1, 远高于相应的乙烯二聚反应能垒. 此外还进一步研究了所用基组对计算结果的影响.  相似文献   

7.
曹亮  周丹红  邢双英  李新 《催化学报》2010,31(6):645-650
 应用量子力学和分子力学联合的 ONIOM2 (B3LYP/6-31G(d,p):UFF) 方法, 采用包含分子筛孔道结构的 78T 簇模型, 对 HZSM-5 分子筛上乙烯芳构化过程中 C4 至 C6 中间体的反应历程进行了研究, 探讨了分子筛的酸催化机理和择形催化作用. 结果表明, 作为乙烯二聚产物的表面正丁基烷氧络合物 (C4) 直接与乙烯作用得到正己基烷氧络合物 (C6), 在分子筛孔穴尺寸的限制下, 很难实现碳链的折叠环化. 按照间歇反应历程, 丁基烷氧络合物先发生 C–O 键断裂, 脱质子生成 1-丁烯, 然后在酸性位上再与乙烯加成, 在分子筛表面生成 3-甲基戊基烷氧络合物. 该烷氧络合物脱除质子给分子筛, 同时环化生成甲基环戊烷, 后者再与分子筛酸性质子共同脱除氢分子, 生成不稳定的碳正离子中间体, 然后重构成环己烷正离子. 丁基烷氧络合物脱质子的活化能为 158.42 kJ/mol; 1-丁烯与乙烯加成反应的活化能为 130.71 kJ/mol; 3-甲基戊基烷氧络合物脱氢环化生成甲基环戊烷的活化能为 122.06 kJ/mol. 由于孔穴的限域作用, 五员环的甲基环戊烷是重要的中间体.  相似文献   

8.
Aiming to improve our understanding of the stability of radicals containing the allylic moiety, carbon-hydrogen bond dissociation enthalpies (BDEs) in propene, isobutene, 1-butene, (E)-2-butene, 3-metylbut-1-ene, (E)-2-pentene, (E)-1,3-pentadiene, 1,4-pentadiene, cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have been determined by quantum chemistry calculations. The BDEs in cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene have also been obtained by time-resolved photoacoustic calorimetry. The theoretical study involved a DFT method as well as ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)). By taking the C(sp3)-H BDE in propene as a reference, we have concluded that one methyl group bonded to C3 in propene (i.e., 1-butene) leads to a decrease of 12 kJ mol(-1) and that a second methyl group bonded to C3 (3-methylbut-1-ene) further decreases the BDE by 8 kJ mol(-1). When the methyl group is bonded to C2 in propene (isobutene), an increase of 7 kJ mol(-1) is observed. Finally, a methyl group bonded to C1 in propene (2-butene) has essentially no effect (-1 kJ mol(-1)). While this trend can be rationalized in terms of stabilization of the corresponding radical (through hyperconjugation and pi-delocalization), the BDE values observed for the dienes can only be understood by considering the thermodynamic stabilities of the parent compounds.  相似文献   

9.
应用理论计算方法研究了Ga/HZSM-5及Al/HZSM-5 分子筛上乙烯二聚生成1-丁烯的反应历程, 比较了分子筛酸性对反应能量的影响. 计算采用分为两层的76T簇模型, 应用量子力学和分子力学联合的 ONIOM2 (B3LYP/6-31G(d, p):UFF) 方法. 乙烯二聚过程可按照分步机理和协同机理进行, 均得到表面丁基烷氧中间产物. 计算结果表明, 与在Al/HZSM-5分子筛上的反应过程相比, 乙烯在 Ga/HZSM-5分子筛上的吸附能低 20.62 kJ·mol-1, 但质子化反应的活化能只高出1.26 kJ·mol-1; 而乙基烷氧中间体与乙烯分子结合过程的活化能高出 62.55 kJ·mol-1, 原因是Ga 原子半径大, 降低了六元环过渡态的稳定性. 若按协同机理, 质子转移和C―C键聚合同时进行, 在 Ga/HZSM-5分子筛上的活化能较Al/HZSM-5的高16.44 kJ·mol-1. 因此乙烯二聚按照协同机理有利. 研究还表明, 表面丁基烷氧中间体脱质子, 生成1-丁烯并吸附在复原的分子筛酸性位上. 该反应在两种酸中心上的活化能几乎相同, 但明显高于其他各步的活化能, 因此成为整个反应的速度控制步骤.  相似文献   

10.
The mechanism of protonation of ethene, propene, and isobutylene adsorbed on seven different Br?nsted acid sites of mordenite has been studied at the ONIOM (B3PW91/6-31G(d,p):MNDO) theoretical level to assess the influence of olefin size and local geometry of the active site on the species and energies involved. The activation energies for olefin protonation are determined by short- and medium-range electrostatic effects and reflect the order of stability of primary, secondary, and tertiary carbenium ions. On the other hand, the stability of covalent alkoxides depends linearly on the AlO(b)Si angle value in the complex, which in turn is determined by the corresponding value in the deprotonated zeolite. It is also shown that the mechanism of protonation of isobutylene is different from that of ethene and propene and involves a free tert-butyl carbenium ion as a true reaction intermediate. Whether this carbenium ion is converted into a covalent alkoxide depends on the T position on which the Al is located. All these findings allow us to predict, on the basis of the position and local geometry of the Br?nsted acid site, whether the reaction intermediates of olefin protonation will be covalent alkoxides or free carbenium ions.  相似文献   

11.
Density functional theory (DFT) cluster calculations were used to describe bifunctional acid-base properties of amine-substituted zeolites containing a Br?nsted acid site. Preliminary results (J. Am. Chem. Soc. 2004, 126, 9162) indicated that efficient use of both functional groups might lead to a substantial lowering of activation barriers. In this paper, comparison is made between the alkoxide formation in zeolites containing only oxygen bridges and alkylammonium formation on the bridging NH groups in amine-functionalized zeolites for various guest species, such as methanol, ethene, and chloromethane. The amine functionalization only lowers barriers for SN2 type reactions with otherwise highly strained transition states, as is the case for chloromethane. In these new materials more basic sites are introduced into the zeolite framework, enabling optimal linear SN2 type transition states incorporating various T sites.  相似文献   

12.
The surface complex [([triple bond]SiO)Re([triple bond]CtBu)(=CHtBu)(CH2tBu)] (1) is a highly efficient propene metathesis catalyst with high initial activities and a good productivity. However, it undergoes a fast deactivation process with time on stream, which is first order in active sites and ethene. Noteworthy, 1-butene and pentenes, unexpected products in the metathesis of propene, are formed as primary products, in large amount relative to Re (>1 equiv/Re), showing that their formation is not associated with the formation of inactive species. DFT calculations on molecular model systems show that byproduct formation and deactivation start by a beta-H transfer trans to the weak sigma-donor ligand (siloxy) at the metallacyclobutane intermediate having a square-based pyramid geometry. This key step has an energy barrier slightly higher than that calculated for olefin metathesis. After beta-H transfer, the most accessible pathway is the insertion of ethene in the Re-H bond. The resulting pentacoordinated trisperhydrocarbyl complex rearranges via either (1) alpha-H abstraction yielding the unexpected 1-butene byproduct and the regeneration of the catalyst or (2) beta-H abstraction leading to degrafting. These deactivation and byproduct formation pathways are in full agreement with the experimental data.  相似文献   

13.
ZSM-5分子筛在甲醇制烯烃(MTO)过程中的催化性能和反应机理与其孔道中酸位点分布位置紧密相关. 本文证明在水热合成过程中加入适量的钠离子(Na+)可以增加ZSM-5分子筛交叉腔酸位点比例; 从而促进高级甲基苯的生成并加速芳烃循环, 有利于乙烯生成. 相反, 在合成过程中不添加钠离子, 所制备的ZSM-5分子筛直孔道和正弦孔道酸位点比例明显提高, 有利于促进烯烃循环并提高丙烯和C3+烯烃选择性.  相似文献   

14.
The gas-phase acidities of the vinyl hydrogens of cis- and trans-2-butene were measured by the silane kinetic method in a Fourier-transform ion cyclotron resonance spectrometer. The acidities of ethene and the secondary vinyl hydrogen of propene were measured by the same method. The method was calibrated using the known acidities of methane and benzene. The vinyl hydrogens of trans-2-butene are more acidic than the vinyl hydrogens of cis-2-butene by 4.5 kcal/mol; the acidities of ethene and the secondary vinyl hydrogen of propene are between those of the two butenes. The acidity of cis-2-butene is 409 +/- 2 kcal/mol, and the acidity of trans-2-butene is 405 +/- 2 kcal/mol. Density functional theory calculations are in good agreement with the experiments. The results are discussed in terms of steric interactions, polarizabilities, dipole-dipole interactions, and charge-dipole interactions.  相似文献   

15.
A simplified three-parameter model for the interpretation of the kinetic data of coke formation during transformation of light olefins is presented. This model has been applied to the transformation of ethene, propene and 1-butene over fresh and regenerated zeolite USHY at 623 K. The proposed model covers both the coverage of the acid sites and the autocatalytic growth of coke.  相似文献   

16.
We propose use of a hybrid method to study problems that involve both bond rearrangements and van-der-Waals interactions. The method combines second-order M?ller-Plesset perturbation theory (MP2) calculations for the reaction site with density functional theory (DFT) calculations for a large system under periodic boundary conditions. Hybrid MP2:DFT structure optimisation for a cluster embedded in the periodic model is the first of three steps in a multi-level approach. The second step is extrapolation of the MP2 energy to the complete basis set limit. The third step is extrapolating the high-level (MP2) correction to the limiting case of the full periodic structure. This is done by calculating the MP2 correction for a series of cluster models of increasing size, fitting an analytic expression to these energy corrections, and applying the fitted expression to the full periodic structure. We assume that, up to a constant, the high-level correction is described by a damped dispersion expression. Combining the results of all three steps yields an estimate of the MP2 reaction energy for the full periodic system at the complete basis set level. The method is designed for a reaction between a small or medium sized substrate molecule and a very large chemical system. For adsorption of isobutene in zeolite H-ferrierite, the energies obtained for the formation of different structures, the pi-complex, the isobutoxide, the tert-butoxide, and the tert-butyl carbenium ion, are -78, -73, -48, and -21 kJ mol(-1), respectively. This corresponds to corrections of the pure DFT (PBE functional) results by -62, -70, -67, and -29 kJ mol(-1), respectively. Hence, the MP2 corrections are substantial and, perhaps more importantly, not the same for the different hydrocarbon species in the zeolite. Coupled-cluster (CCSD(T)) calculations change the MP2 energies by -4 kJ mol(-1) (tert-butyl cation) or less (below +/-1 kJ mol(-1) for the other species).  相似文献   

17.
运用Gaussian 98程序包, 采用密度泛函理论B3LYP方法, 基于ZSM-5分子筛的8T模型, 分别通过6-31G, 6-31G(d)和6-311G(d,p)基组计算了ZSM-5分子筛中氮原子取代前后各O原子和各N原子的能量, 从而得到各O原子与各N原子在骨架中的稳定性及其对氮化取代反应的影响. 计算结果表明, N原子在骨架中的稳定性对氮取代反应的影响较大. ZSM-5分子筛晶体结构中与B酸位处于同一个四面体的O11位置, 为氮原子的最佳取代位置, 因此氮化后分子筛表面的B酸强度得到较大程度的减弱.  相似文献   

18.
孙秀良  黄崇品  张傑 《无机化学学报》2009,25(11):2053-2061
基于量子化学中的密度泛函理论(DFT),通过β分子筛同模板剂四乙胺阳离子(TEA+)的主客体相互作用来讨论了模板剂分子对骨架Al的靶向作用。计算采用了密度泛函理论中的B3LYP方法在6-31G(d,p)基组上研究了β分子筛同TEA+主客体相互作用的几何结构、分子轨道、电荷分布以及9个不同骨架位置的相互作用能。研究结果表明:带正电荷的TEA+吸引β分子筛上Al原子形成的阴离子中心(Zeo-AlO4-),两者具有很好的匹配关系。通过主客体相互作用影响了Al原子在分子筛中的分布。骨架Al最有利于落位在β分子筛的T5和T6位,落位的稳定性顺序是Group Ⅱ(T5,T6)>Group Ⅲ(T7-T9)>Group Ⅰ(T1-T4)。  相似文献   

19.
采用等体积浸渍法制备了一系列不同Mg含量(0–1.0%)的HZSM-5分子筛。利用X射线衍射(XRD)、N_2吸附/脱附、铝魔角旋转固体核磁共振(~(27)AlMASNMR)、~(29)SiMASNMR、氨-程序升温脱附(NH_3-TPD)和吡啶吸附傅里叶变换红外(Pyridine-IR)光谱等技术对改性前后样品的结构和酸性进行了详细表征,在常压连续流动固定床反应器上考察其对乙烯转化制丙烯(ETP)反应的催化性能,评价了反应条件和Mg改性的影响。结果表明,在温度为550°C、乙烯体积空速GHSV=3000 h~(-1)的适宜反应条件下,0.5%适量镁改性HZSM-5导致乙烯转化率有所下降,但丙烯选择性增加到45%以上,而副产物芳烃的选择性降到8%以下。反应前样品的酸性表征和反应后积碳样品的TPO及~(13)CCP/MASNMR谱图分析表明适量镁改性使HZSM-5分子筛的总酸量和强B酸量减少而中强酸量增加,从而提高了丙烯的选择性,但是过量的镁改性使分子筛的总酸量明显减少,导致催化剂的活性显著下降。  相似文献   

20.
In this study, the results from a systematic analysis of two different mechanisms for the skeletal isomerization of cis-butene to isobutene in ferrierite (FER) are presented. One involves a conventional mechanism that proceeds via stable alkoxide intermediates and the other is one which proceeds via carbenium ions only. A 27T QM cluster model has been used in this study, which is described using the M06-2X DFT functional. It is found that the alkoxide intermediates formed over the course of the conventional pathway are considerably lower in energy than the carbenium ion formed over the course of the alternate pathway. However, the rate determining step in the latter pathway is predicted to be almost 10 kcal/mol lower in energy. The higher barrier for the latter process is due to the inherent stability of the alkoxide intermediates formed within FER. These results appear to suggest that while these intermediates are formed over the course of the reaction, the skeletal isomerization of linear butenes to form isobutene in FER may occur via a carbenium based mechanism. This proposal is consistent with experimental results that show alkoxide intermediates are experimentally observed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号