首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) and nitrocellulose/nitroglycerine (NC/NG) possess good energy properties, which were widely used in propellants, explosives and pyrotechnics. They are easy to contact with each other during their application and storage. However, their thermal characteristics under continuous heat flow have not been reported yet. Therefore, it is of great practical significance to study the thermal properties of TKX-50/NC/NG (mixture of TKX-50 and NC/NG). In this paper, the thermal characteristics and pressure behaviors of TKX-50/NC/NG, TKX-50 and NC/NG were characterized by high pressure differential scanning calorimetry (HPDSC) and adiabatic scanning calorimetry (ASC). The results showed that TKX-50 and NC/NG can promote each other to decompose under continuous heat flow, especially the thermal decomposition which affected by gases generation and heat feedback was more violent in the confined space. The decomposition peak temperature of TKX-50/NC/NG shifted to low temperature when the heat loss was ignored and the removal of decomposition gas was suppressed. The possible decomposition mechanism of TKX-50/NC/NG was speculated. It was considered that the intermediate products of TKX-50 and NC/NG decomposition under thermal stimulation would react with each other, which promoted TKX-50/NC/NG decomposition in one step at lower temperature. Thus, TKX-50 has high reactivity and high potential risk after contact with NC/NG under continuous heat flow. TKX-50 is not suitable for application with NC/NG. This study provides a reference for the structural design of nitrogen rich explosives and further broadens the researchers’ understanding of the application of TKX-50.  相似文献   

2.
S.G. Wang  R.Z. Wang  J.Y. Wu  Y.X. Xu 《Adsorption》2003,9(4):349-358
An adsorption ice-making machine has been built with a single consolidated adsorber and activated carbon-methanol pair. A consolidated adsorbent block made of activated carbon mixed with a binder with good heat transfer properties has been developed and implemented in the adsorber. The design is focused on the adsorber consisting of copper finned tubes and carbon blocks. Experimental tests have been performed suitable for ice making. This paper describes the experimental results of such an ice-maker operating with an intermittent cycle and a cycle time of 35 minutes. The thermal conditions used to test the cycle are: 115°C heat source, 22°C heat sink, the evaporator temperature corresponding to the chilled ethylene glycol temperature is –7°C. At this evaporating pressure, the mass transfer resistance controls the adsorption process. Test results show that the COP reaches 0.07 whereas the SCP (specific cooling power) is 11 W kg–1 activated carbon. A two-bed adsorptive prototype ice-making machine operating with a heat and mass recovery cycle has also been made for onboard adsorption refrigeration in fishing boats. Good performances have been achieved due to improved mass transfer and the new ice maker can produce 18–20 kg h–1 of flake ice at mean temperature of –7°C.  相似文献   

3.
Gas hydrate is a new technology for energy gas (methane/hydrogen) storage due to its large capacity of gas storage and safe. But industrial application of hydrate storage process was hindered by some problems. For methane, the main problems are low formation rate and storage capacity, which can be solved by strengthening mass and heat transfer, such as adding additives, stirring, bubbling, etc. One kind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate, and the other kind of additives is surfactant, which can form micelle with water and increase the interface of water-gas. Dry water has the similar effects on the methane hydrate as surfactant. Additionally, stirring, bubbling, and spraying can increase formation rate and storage capacity due to mass transfer strengthened. Inserting internal or external heat exchange also can improve formation rate because of good heat transfer. For hydrogen, the main difficulties are very high pressure for hydrate formed. Tetrahydrofuran (THF), tetrabutylammonium bromide (TBAB) and tetrabutylammonium fluoride (TBAF) have been proved to be able to decrease the hydrogen hydrate formation pressure significantly.  相似文献   

4.
A sound understanding of any sorption system requires an accurate determination of the enthalpy of adsorption. This is a fundamental thermodynamic quantity that can be determined from experimental sorption data and its correct calculation is extremely important for heat management in adsorptive gas storage applications. It is especially relevant for hydrogen storage, where porous adsorptive storage is regarded as a competing alternative to more mature storage methods such as liquid hydrogen and compressed gas. Among the most common methods to calculate isosteric enthalpies in the literature are the virial equation and the Clausius–Clapeyron equation. Both methods have drawbacks, for example, the arbitrary number of terms in the virial equation and the assumption of ideal gas behaviour in the Clausius–Clapeyron equation. Although some researchers have calculated isosteric enthalpies of adsorption using excess amounts adsorbed, it is arguably more relevant to applications and may also be more thermodynamically consistent to use absolute amounts adsorbed, since the Gibbs excess is a partition, not a thermodynamic phase. In this paper the isosteric enthalpies of adsorption are calculated using the virial, Clausius–Clapeyron and Clapeyron equations from hydrogen sorption data for two materials—activated carbon AX-21 and metal-organic framework MIL-101. It is shown for these two example materials that the Clausius–Clapeyron equation can only be used at low coverage, since hydrogen’s behaviour deviates from ideal at high pressures. The use of the virial equation for isosteric enthalpies is shown to require care, since it is highly dependent on selecting an appropriate number of parameters. A systematic study on the use of different parameters for the virial was performed and it was shown that, for the AX-21 case, the Clausius–Clapeyron seems to give better approximations to the exact isosteric enthalpies calculated using the Clapeyron equation than the virial equation with 10 variable parameters.  相似文献   

5.
The adsorption kinetics of H2O in a clinoptilolite rich zeolitic tuff was experimentally investigated at 18°C. In the identification of the diffusion mechanism the isothermal adsorption model equation was used. It was found out that the intraparticle mass transfer becomes more dominant over the heat transfer with increase in particle size and the adsorptive dose pressure. Although initially intraparticle mass transfer was the controlling resistance later external heat transfer also contributes to the transfer mechanism.  相似文献   

6.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size.  相似文献   

7.
Gas hydrate is a new technology for energy gas(methane/hydrogen)storage due to its large capacity of gas storage and safe.But industrial application of hydrate storage process was hindered by someproblems.For methane,the main problems are low formation rateand storage capacity,which can be solved by strengthening mass andheat transfer,such as adding additives,stirring,bubbling,etc.Onekind of additives can change the equilibrium curve to reduce the formation pressure of methane hydrate,and the other kind of additivesis surfactant,which can form micelle with water and increase the interface of water-gas.Dry water has the similar effects on the methanehydrate as surfactant.Additionally,stirring,bubbling,and sprayingcan increase formation rate and storage capacity due to mass transferstrengthened.Inserting internal or external heat exchange also canimprove formation rate because of good heat transfer.For hydrogen,the main difficulties are very high pressure for hydrate formed.Tetrahydrofuran(THF),tetrabutylammonium bromide(TBAB) andtetrabutylammonium fluoride(TBAF) have been proved to be able todecrease the hydrogen hydrate formation pressure significantly.  相似文献   

8.

Numerical simulations are performed to analyze the thermal characteristics of a latent heat thermal energy storage system with phase change material embedded in highly conductive porous media. A network of finned heat pipes is also employed to enhance the heat transfer within the system. ANSYS-FLUENT 19.0 is used to create a transient multiphase computational model to simulate the thermal behavior of the storage unit. Copper foam is the porous medium used to enhance the heat transfer and is impregnated with the phase change material, potassium nitrate (KNO3). The effects of the porosity of the metal foam and the quantity of heat pipes on the thermal characteristics of storage unit have been investigated. The results indicated that increasing the quantity of the embedded heat pipes leads to drastic acceleration of both charging and discharging process. Impregnating the copper foam with potassium nitrate phase change material significantly affects the total charging and discharging times of the storage unit. It was shown that the porosity of the metal foam plays a key role in the thermal behavior of the system during the charging and discharging processes.

  相似文献   

9.
A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.  相似文献   

10.
In this paper, a fundamental practical unit, namely the wedge-shaped enclosure, is proposed as a novel and efficient latent heat storage unit for thermal energy storage. The enthalpy–porosity method that treats the solid and liquid zones as a single domain is employed. Effect of the mushy zone constant C on melting is analyzed and a suitable value is obtained by comparing the numerical results with experimental data in the literature. A series of simulations are conducted to analyze the transient melting coupled with natural convection as well as the heat transfer process. Fourteen units those have different length ratios between top and bottom of the enclosures are investigated and compared by the analysis of transient temperature fields, vertical velocity distributions, and evolution of the melting fronts. It is found that the length ratio n dramatically affects the full melting time and heat transfer intensity. An enclosure of n = 5.5, which has the shortest completion time and the highest heat transfer intensity, is determined as the optimal unit. Compared with the base geometry (n = 1), charging time of the optimal unit (n = 5.5) decreased by 32.8 %, while the heat transfer intensity increased by 45.7 %. This is a significant improvement in the field of latent heat storage.  相似文献   

11.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration.  相似文献   

12.
Mathematical models for pressure swing adsorption (PSA) processes essentially require the simultaneous solutions of mass, heat and momentum balance equations for each step of the process using appropriate boundary conditions for the steps. The key model input variables needed for estimating the separation performance of the process are the multicomponent adsorption equilibria, kinetics and heats of adsorption for the system of interest. A very detailed model of an adiabatic Skarstrom PSA cycle for production of high purity methane from a ethylene-methane bulk mixture is developed to study the sensitivity of the process performance to the input variables. The adsorption equilibria are described by the heterogeneous Toth model which accounts for variations of isosteric heats of adsorption of the components with adsorbate loading. A linear driving force model is used to describe the kinetics. The study shows that small errors in the heats of adsorption of the components can severely alter the overall performance of the process (methane recovery and productivity). The adsorptive mass transfer coefficients of the components also must be known fairly accurately in order to obtain precise separation performance.  相似文献   

13.
Pingba RP-3喷气燃料中有色组分的鉴定及其特性研究   总被引:3,自引:0,他引:3  
用中性氧化铝吸附、无水乙酸脱附的方法,对储存中变色的Pingba RP-3喷气燃料中的有色组分进行分离制备。应用有机元素分析、红外光谱、色质联用和裂解色质联用等分析法对富集有色组分的吸附胶质进行了分析鉴定,对燃料的储存特性和有色组分的化学特性进行了考察。结果表明,Pingba RP-3喷气燃料中的有色组分全部集中在吸附胶质中,吸附胶质以含氧化合物为主,其主要成分为烷基苯酚类(及其多聚体)化合物,含氮化合物质量分数极少,未检出含硫化合物。Pingba RP-3在储存中颜色变深的主要原因是胶质中的烷基苯酚类化合物氧化和缩聚。储存过程中喷气燃料的吸附胶质和颜色增加显著,与燃料在一定条件下的氧化反应有关。  相似文献   

14.
Heat transfer fluids are often a critical performance component in industrial processes and system design. Fluids are used in heat dissipation to maintain stable operating temperatures in a variety of applications, such as diesel engines, chemical production, asphalt storage, and high-power electric transformers. A wide range of fluids specific to various applications are available, thus a reliable and accurate thermal conductivity characterization is extremely important. Thermal conductivity analysis of heat transfer fluids with traditional methods is time-consuming and error-prone due to the impact of convection. Convection often distorts effective thermal conductivity measurement as an additional source of heat transfer. The modified transient plane source method implemented in the C-Therm Technologies TCi Analyzer provides an easy way to accurately measure the thermal conductivity and distinguish this form of heat transfer in negating the impact of convection by (a) employing the shortest test time in commercially available sensors (0.8 s), (b) offering a minimal sample volume requirement (1.25 mL), and (c) employing a low-energy power flux to the specimen under test (approximately 2,600 W m?2). This work presents thermal conductivity results generated on three types of heat transfer fluids over a wide temperature range and discusses the significance of the data in relevance to the application.  相似文献   

15.
The adsorption of cetyltrimethylammonium bromide (CTAB) and cetyldimethylbenzylammonium chloride (CDBACl) on a hanging mercury electrode is studied using adsorptive transfer stripping voltammetry. The surfactants are adsorbed on mercury and are then transferred in KBr or KCl under various conditions, including temperatures from 1 to 40°C, open or closed circuits with different initial potentials, and repeated scans, etc. The results are compared with previously published results on the adsorption of CTAB or CDBACl on mercury, where condensed films were formed and are quite different than those obtained by adsorptive stripping voltammetry. In this case, an absence of condensed film is observed for CTAB. A condensed film with low capacitance value is formed in the case of CDBACl after transfer at low temperatures, or after repeated scans, resulting in reorientation of the molecules to more compact states. Capacity time curves at the potentials where the film is formed show in a few cases a nucleation and growth mechanism, with induction time and studied by the Avrami formulation, while an observed increase of the capacitance with time is attributed to the formation of hemimicelles. The results also indicate the importance of interactions between the hydrophobic chains.  相似文献   

16.
天然气作为绿色替代能源,其吸附储存在移动应用方面至关重要,目前广泛关注的3种吸附储存技术存在着各自的优势和劣势。本文综述了多孔碳质吸附剂、金属有机框架吸附剂和吸附天然气水合物的研究进展,总结了天然气吸附性能的主要影响因素和改进途径,介绍了超临界吸附理论和分子模拟预测的相关工作,比较了3种技术的优劣及相关发展趋势。  相似文献   

17.
Hou  Pumin  Mao  Jinfeng  Liu  Rongrong  Chen  Fei  Li  Yong  Xu  Chang 《Journal of Thermal Analysis and Calorimetry》2019,137(4):1295-1306

In this study, three different volume expansion ratios of expanded graphite (EG) are prepared and investigated to enhance the heat transfer efficiency of the sodium acetate trihydrate (SAT) composites. A series of SAT composite phase change materials (CPCMs) with EG were prepared. The influence of volume expansion ratio and mass fraction of EG on thermodynamic characteristics of SAT CPCMs was examined, including thermal conductivity, phase change temperature, enthalpy, latent heat storage and release time, and the degree of supercooling. Results showed that SAT CPCMs can be absorbed adequately by EG, and EG could enhance the heat transfer efficiency effectively. But it also brought some problems with the addition of all the three volume expansion ratios of EG, such as the poor enthalpy and serious supercooling. Particularly, the situation gets worse with the increase in mass and expansion ratio of EG. Therefore, it is better to choose the EG with proper expansion ratio or reduce the proportion of the EG which possesses higher expansion ratio. Besides, thermal cycling test and thermogravimetric analysis revealed that the SAT CPCMs with 3 mass% EG showed a good thermal stability.

  相似文献   

18.
通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载量从47.4%提高到了61.1%,进而提高了复合材料的储热性能;向改性DIA中添加膨胀石墨(EG)提高了复合材料的传热能力,添加质量分数10%EG时导热系数提高了113%(从0.276 W·m-1·K-1提高到了0.589 W·m-1·K-1)。随着EG含量的升高,复合相变材料的相变潜热有所增加,但化学相容性、稳定性等无明显变化。含 10%EG的石蜡/碱改性 DIA复合材料具有可靠的储能性能、良好的温度调节性能和蓄放热能力。  相似文献   

19.
通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载量从47.4%提高到了61.1%,进而提高了复合材料的储热性能;向改性DIA中添加膨胀石墨(EG)提高了复合材料的传热能力,添加质量分数10%EG时导热系数提高了113%(从0.276 W·m-1·K-1提高到了0.589 W·m-1·K-1)。随着EG含量的升高,复合相变材料的相变潜热有所增加,但化学相容性、稳定性等无明显变化。含10%EG的石蜡/碱改性DIA复合材料具有可靠的储能性能、良好的温度调节性能和蓄放热能力。  相似文献   

20.
The noble gas binding ability of CN3Be3+ clusters was assessed both by ab intio and density functional studies. The global minimum structure of the CN3Be3+ cluster binds with four noble‐gas (NG) atoms, in which the Be atoms are acting as active centers. The electron transfer from the noble gas to the Be atom plays a key role in binding. The dissociation energy of the Be? NG bond gradually increases from He to Rn, maintaining the periodic trend. The HOMO–LUMO gap, an indicator for stability, gives additional insight into these NG‐bound clusters. The temperature at which the NG‐binding process is thermodynamically feasible was identified. In addition, we investigated the stability of two new neutral NG compounds, (NG)BeSe and (NG)BeTe, and found them to be suitable candidates to be detected experimentally such as (NG)BeO and (NG)BeS. The dissociation energies of the Be? NG bond in monocationic analogues of (NG)BeY (Y=O, S, Se, Te) were found to be larger than in the corresponding neutral counter‐parts. Finally, the higher the positive charge on the Be atoms, the higher the dissociation energy for the Be? NG bond becomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号