首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Thermal energy storage units conventionally have the drawback of slow charging response. Thus, heat transfer enhancement techniques are required to reduce charging time. Using nanoadditives is a promising approach to enhance the heat transfer and energy storage response time of materials that store heat by undergoing a reversible phase change, so-called phase change materials. In the present study, a combination of such materials enhanced with the addition of nanometer-scale graphene oxide particles (called nano-enhanced phase change materials) and a layer of a copper foam is proposed to improve the thermal performance of a shell-and-tube latent heat thermal energy storage (LHTES) unit filled with capric acid. Both graphene oxide and copper nanoparticles were tested as the nanometer-scale additives. A geometrically nonuniform layer of copper foam was placed over the hot tube inside the unit. The metal foam layer can improve heat transfer with an increase of the composite thermal conductivity. However, it suppressed the natural convection flows and could reduce heat transfer in the molten regions. Thus, a metal foam layer with a nonuniform shape can maximize thermal conductivity in conduction-dominant regions and minimize its adverse impacts on natural convection flows. The heat transfer was modeled using partial differential equations for conservations of momentum and heat. The finite element method was used to solve the partial differential equations. A backward differential formula was used to control the accuracy and convergence of the solution automatically. Mesh adaptation was applied to increase the mesh resolution at the interface between phases and improve the quality and stability of the solution. The impact of the eccentricity and porosity of the metal foam layer and the volume fraction of nanoparticles on the energy storage and the thermal performance of the LHTES unit was addressed. The layer of the metal foam notably improves the response time of the LHTES unit, and a 10% eccentricity of the porous layer toward the bottom improved the response time of the LHTES unit by 50%. The presence of nanoadditives could reduce the response time (melting time) of the LHTES unit by 12%, and copper nanoparticles were slightly better than graphene oxide particles in terms of heat transfer enhancement. The design parameters of the eccentricity, porosity, and volume fraction of nanoparticles had minimal impact on the thermal energy storage capacity of the LHTES unit, while their impact on the melting time (response time) was significant. Thus, a combination of the enhancement method could practically reduce the thermal charging time of an LHTES unit without a significant increase in its size.  相似文献   

2.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration.  相似文献   

3.

This paper presents the numerical analysis of the transient performance of the latent heat thermal energy storage unit established on finite difference method. The storage unit consists of a shell and tube arrangement with phase change material (PCM) filled in the shell space and the heat transfer fluid (HTF) flowing in the inner tube. The heat exchange between the HTF, wall and PCM has been investigated by developing a 2-D fully implicit numerical model for the storage module and solving the complete module as a conjugate problem using enthalpy transforming method. A comparative investigation of the total melting time of the PCM has been performed based on natural convection in liquid PCM during the charging process. The novelty of this paper lies in the fact it includes convection in PCM and this investigation includes a detailed parametric study which can be used as a reference to design latent heat storage. The results indicate that natural convection accelerates the melting process by a significant amount of time. In order to optimize the design of the thermal storage unit, parametric study has been accompanied to analyze the influence of various HTF working conditions and geometric dimensions on the total melting time of the PCM. Another important feature considered in this work is the influence of the inner wall of the tube carrying the HTF on the entire melting time of the PCM. An error of around 7.2% is reported when inner wall of the tube is ignored in the analysis.

  相似文献   

4.
Thermal energy storage is a technique that has the potential to contribute to future energy grids to reduce fluctuations in supply from renewable energy sources. The principle of energy storage is to drive an endothermic phase change when excess energy is available and to allow the phase change to reverse and release heat when energy demand exceeds supply. Unwanted charge leakage and low heat transfer rates can limit the effectiveness of the units, but both of these problems can be mitigated by incorporating a metal foam into the design of the storage unit. This study demonstrates the benefits of adding copper foam into a thermal energy storage unit based on capric acid enhanced by copper nanoparticles. The volume fraction of nanoparticles and the location and porosity of the foam were optimized using the Taguchi approach to minimize the charge leakage expected from simulations. Placing the foam layer at the bottom of the unit with the maximum possible height and minimum porosity led to the lowest charge time. The optimum concentration of nanoparticles was found to be 4 vol.%, while the maximu possible concentration was 6 vol.%. The use of an optimized design of the enclosure and the optimum fraction of nanoparticles led to a predicted charging time for the unit that was approximately 58% shorter than that of the worst design. A sensitivity analysis shows that the height of the foam layer and its porosity are the dominant variables, and the location of the porous layer and volume fraction of nanoparticles are of secondary importance. Therefore, a well-designed location and size of a metal foam layer could be used to improve the charging speed of thermal energy storage units significantly. In such designs, the porosity and the placement-location of the foam should be considered more strongly than other factors.  相似文献   

5.

Highly conductive nanoparticles were proposed to be dispersed into phase change materials (PCMs) such as paraffin wax for heat transfer enhancement. The mixture, often referred to as nanoparticle-enhanced phase change material (NePCM), has been studied extensively for latent heat energy storage but with conflicting results. This study attempts to understand this problem by investigating the stability of NePCMs under multiple thermal (melting–solidification) cycles, which has not been well explained in previous studies. We believe that stability of a NePCM is prerequisite for any experimental investigation of its thermal properties or application. In this study, paraffin wax was chosen as the base material. Three different types of nanoparticles were tested, i.e., multi-walled carbon nanotubes, graphene nanoplatelets, and aluminum oxide nanoparticles (Al2O3). The nanoparticles were dispersed into paraffin wax at varying mass fractions using mechanical dispersion methods (sonication, stirring) with and without different surfactants. Stability of different mixtures was investigated after consecutive thermal cycles performed in an environmental chamber. Significant coagulation and deposition of nanoparticles were found after a few thermal cycles regardless of the nanoparticle type, concentration, or dispersion method. Different boundary conditions in heating were also examined for their effects. None of these methods led to long-term stable NePCMs. The “negative” results from this study indicate that long-term stability of NePCM (at least for the paraffin wax and nanoparticles tested) remains a major challenge and requires further research with a multidisciplinary approach.

  相似文献   

6.

Numerical simulations are performed to analyze the thermal characteristics of a latent heat thermal energy storage system with phase change material embedded in highly conductive porous media. A network of finned heat pipes is also employed to enhance the heat transfer within the system. ANSYS-FLUENT 19.0 is used to create a transient multiphase computational model to simulate the thermal behavior of the storage unit. Copper foam is the porous medium used to enhance the heat transfer and is impregnated with the phase change material, potassium nitrate (KNO3). The effects of the porosity of the metal foam and the quantity of heat pipes on the thermal characteristics of storage unit have been investigated. The results indicated that increasing the quantity of the embedded heat pipes leads to drastic acceleration of both charging and discharging process. Impregnating the copper foam with potassium nitrate phase change material significantly affects the total charging and discharging times of the storage unit. It was shown that the porosity of the metal foam plays a key role in the thermal behavior of the system during the charging and discharging processes.

  相似文献   

7.
In this paper, a fundamental practical unit, namely the wedge-shaped enclosure, is proposed as a novel and efficient latent heat storage unit for thermal energy storage. The enthalpy–porosity method that treats the solid and liquid zones as a single domain is employed. Effect of the mushy zone constant C on melting is analyzed and a suitable value is obtained by comparing the numerical results with experimental data in the literature. A series of simulations are conducted to analyze the transient melting coupled with natural convection as well as the heat transfer process. Fourteen units those have different length ratios between top and bottom of the enclosures are investigated and compared by the analysis of transient temperature fields, vertical velocity distributions, and evolution of the melting fronts. It is found that the length ratio n dramatically affects the full melting time and heat transfer intensity. An enclosure of n = 5.5, which has the shortest completion time and the highest heat transfer intensity, is determined as the optimal unit. Compared with the base geometry (n = 1), charging time of the optimal unit (n = 5.5) decreased by 32.8 %, while the heat transfer intensity increased by 45.7 %. This is a significant improvement in the field of latent heat storage.  相似文献   

8.

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

  相似文献   

9.
换热器与相变材料的兼容性研究进展   总被引:1,自引:0,他引:1  
相变材料是一类以潜热实现能量存储释放的储能材料,由于其在相变温度附近具有很大的储热密度,相变材料可以被用于建筑控温、太阳能热发电和高温传热蓄热等应用中。 换热器是相变储能设备的重要组成部分,可以将热量在供需两端进行传递和转移,保障需求一方的使用,随着相变材料研究的不断深入及其工程应用的广泛普及,换热器已在众多相变储能项目中发挥了重要的枢纽作用。 为了保证换热器的使用性能,需要对换热器在相变材料中的防腐蚀性进行全面的分析。 本文总结了大量国内外的文献,分析不同成分的相变材料对换热器材料的腐蚀性,为换热器材料的选择提供了参考。  相似文献   

10.
Hou  Pumin  Mao  Jinfeng  Liu  Rongrong  Chen  Fei  Li  Yong  Xu  Chang 《Journal of Thermal Analysis and Calorimetry》2019,137(4):1295-1306

In this study, three different volume expansion ratios of expanded graphite (EG) are prepared and investigated to enhance the heat transfer efficiency of the sodium acetate trihydrate (SAT) composites. A series of SAT composite phase change materials (CPCMs) with EG were prepared. The influence of volume expansion ratio and mass fraction of EG on thermodynamic characteristics of SAT CPCMs was examined, including thermal conductivity, phase change temperature, enthalpy, latent heat storage and release time, and the degree of supercooling. Results showed that SAT CPCMs can be absorbed adequately by EG, and EG could enhance the heat transfer efficiency effectively. But it also brought some problems with the addition of all the three volume expansion ratios of EG, such as the poor enthalpy and serious supercooling. Particularly, the situation gets worse with the increase in mass and expansion ratio of EG. Therefore, it is better to choose the EG with proper expansion ratio or reduce the proportion of the EG which possesses higher expansion ratio. Besides, thermal cycling test and thermogravimetric analysis revealed that the SAT CPCMs with 3 mass% EG showed a good thermal stability.

  相似文献   

11.
Graphite/n-docosane composite phase change materials (PCM) were prepared. 4, 10, and 16% graphite were added into n-docosane in order to study the effect of the amount of graphite to the thermal properties of the composite PCM. The structure of the composite PCM was characterized using scanning electron microscopy. The thermal properties of the composite PCM were determined using thermal constant analysis, heat storage/release curve, differential scanning calorimetry, and thermogravimetry analysis. The results revealed that the heat storage/release rate and the thermal conductivity increased with an increase in the amount of graphite, whereas the latent heat of the composite PCM decreased with the increase in the amount of graphite.  相似文献   

12.

Turbulent flow characteristics and heat transfer applications of a twisted heat exchanger with 3-lobed cross section along with Y-tape insert are numerically studied. The working fluids for the simulations are pure water and water–Al2O3 nanofluid using two-phase mixture model. The study is carried out for various nanofluid volume fractions of 0.01, 0.02 and 0.03 with Reynolds number in the range of 5000–20,000. The effect of nanoparticles in heat transfer augmentation for smooth and lobed tubes is discussed based on presenting the highest thermal performance, which is a relation between heat transfer rate and pressure loss. Results show that implementing the twisted tube with Y-tape insert enhances the heat transfer more than the twisted tube. Relative Nusselt numbers for twisted tubes decrease with Reynolds number in comparison with the plain tube. Turbulent intensity, swirl number and tangential velocity of twisted tube with insert are higher than empty twisted tube indicating that inserting the Y-tape intensifies the turbulence and disturbs the fluid flow further. On the other hand, although the twisted tube increases the pressure drop more than plain tube, the case with Y-tape drastically increases the friction factor. So, the thermal performance of twisted tube with insert is lower than empty twisted tube. Adding nanoparticles to the base fluid has different influence on the investigated cases. It augments the relative Nusselt number inside plain tube and empty twisted tube with slight increment in friction factor. Increasing the nanoparticles concentration enhances the heat transfer rates for these cases while it does not increase the relative Nusselt number inside twisted tube with Y-tape insert at high Reynolds number and nanoparticle concentration. Moreover, it can be found that twisted tube with or without Y-tape insert is more efficient at low Reynolds number in comparison with the plain tube.

  相似文献   

13.
The eutectic mixture of octacosane (C28)–heptadecane (C17) as core material was successfully encapsulated with an acrylic-based polymer (polymethylmethacrylate; PMMA) as shell material through emulsion polymerization. The polymeric reaction occurred around the core material was characterized by FTIR spectroscopy analysis. The polarized optical microscopy, scanning electron microscopy and particle size distribution investigations showed that the most of the prepared capsules had almost spherical shape with non-unimodal size distribution in micro-nano range. The differential scanning calorimetry analysis results exhibited that the capsules including highest amount of the eutectic PCM had a melting temperature of about 21°C and a latent heat capacity of about 98 J/g. The high thermal durability of the prepared capsules was confirmed by thermogravimetric analysis. The thermal cycling test designated that the synthesized capsules had good long-term usage latent heat thermal energy storage (LHTES) performance and chemical stability. Furthermore; the fabricated capsules with (1: 2) shell/core ratio had a reasonable thermal conductivity. It can be drawn a conclusion from all results that the prepared capsules especially PMMA/(C28–C17) (1: 2) product is a hopeful PCM that can be evaluated for low-temperature LHTES applications.  相似文献   

14.

In the present study, the exact solution of a nanofluid flow and mixed convection within a vertical cylindrical annulus with suction/injection, which is adjacent to the radial magnetic field, is presented with regard to the motion of cylinders’ walls. The impact of Brownian motion and shape factor on the thermal state of CuO–water nanofluid is also considered. The influence of such parameters as Hartmann number, mixed convection parameter, suction/injection, volume fraction of nanoparticles and motion of cylinders’ walls on flow and heat transfer is probed. The results show that the shape of the nanoparticles could change the thermal behavior of the nanofluid and when the nanoparticles are used in the shape of a platelet, the highest Nusselt number is obtained (about 2.5% increasement of Nusselt number on internal cylinders’ wall comparison to spherical shape). The results shed light on the fact that if, for example, the external cylinder is stationary and the internal cylinder moves in the direction of z axis, the maximum and minimum heat transfer take place on the walls of internal and external cylinders, respectively (for η?=?300, about 15% increasement of Nusselt number on internal cylinders’ wall). Furthermore, the enhancement of radius ratio between two cylinders increases the rate of heat transfer and decreases the shear stress on the internal cylinder’s wall.

  相似文献   

15.

High-performance cooling is of vital importance for the cutting-edge technology of today, from nanoelectronic mechanical systems to nuclear reactors. Advances in nanotechnology have allowed the development of a new category of coolants, termed nanofluids that have the potential to enhance the thermal performance of conventional heat transfer fluids. At the present time, nanofluids are a controversial research theme, since there is yet no conclusive answer to explain the underlying physical mechanisms of heat transfer. The current study investigates experimentally the heat and mass transfer behaviour of dilute Al2O3–H2O nanofluids under turbulent natural convection—Rayleigh number of the order of 109—in a cubic Rayleigh–Bénard cell with optical access. Traditional heat transfer measurements were combined with a velocimetry method to obtain a deeper understanding of the impact of nanoparticles on the heat transfer performance of the base fluid. Particle image velocimetry was employed to quantify the resulting mean velocity field and flow structures in dilute nanofluids under natural convection, at three parallel planes inside the cubic cell. All the results were compared with that for the base fluid, i.e. deionised water. It was observed that the presence of a minute amount of Al2O3 nanoparticles in deionised water, φv =?0.00026 vol.%, considerably modifies the mass transfer behaviour of the fluid in the bulk region of turbulent Rayleigh–Bénard convection. Simultaneously, the general heat transport, as expressed by the Nusselt number, remained unaffected within the experimental uncertainty.

  相似文献   

16.
The aim of this study is to investigate the melting/freezing characteristics of paraffin by adding Cu nanoparticles. Cu/paraffin composite phase change materials (PCMs) were prepared by a two-step method. The effects of Cu nanoparticles on the thermal conductivity and the phase change heat transfer of PCMs were investigated by the Hot Disk thermal constants analyzer and infrared monitoring methods, respectively. The maximum thermal conductivity enhancements up to 14.2% in solid state and 18.1% in liquid state are observed at the 2?wt% Cu/paraffin. The photographs of infrared monitoring suggest that the melting and freezing rates of Cu/paraffin are enhanced. For 1?wt% Cu/paraffin, the melting and freezing times can be saved by about 33.3 and 31.6%, respectively. The results provide that adding nanoparticles is an efficient way to enhance the phase change heat transfer of PCMs.  相似文献   

17.
Heat transfer fluids are often a critical performance component in industrial processes and system design. Fluids are used in heat dissipation to maintain stable operating temperatures in a variety of applications, such as diesel engines, chemical production, asphalt storage, and high-power electric transformers. A wide range of fluids specific to various applications are available, thus a reliable and accurate thermal conductivity characterization is extremely important. Thermal conductivity analysis of heat transfer fluids with traditional methods is time-consuming and error-prone due to the impact of convection. Convection often distorts effective thermal conductivity measurement as an additional source of heat transfer. The modified transient plane source method implemented in the C-Therm Technologies TCi Analyzer provides an easy way to accurately measure the thermal conductivity and distinguish this form of heat transfer in negating the impact of convection by (a) employing the shortest test time in commercially available sensors (0.8 s), (b) offering a minimal sample volume requirement (1.25 mL), and (c) employing a low-energy power flux to the specimen under test (approximately 2,600 W m?2). This work presents thermal conductivity results generated on three types of heat transfer fluids over a wide temperature range and discusses the significance of the data in relevance to the application.  相似文献   

18.
Convective heat transfer characteristics of water/Al2O3 nanofluid flow inside a tube were evaluated in this study. A non-uniform concentration distribution was used in thermal dispersion model. Meanwhile, an experimental study was done to find the dispersion coefficient in addition to assess the accuracy of simulation results. The accuracy of the results of thermal dispersion model was compared with the numerical solution using discrete phase modeling and homogenous method, while the effective parameters on particle migration were considered to find the particle distribution for being used in the dispersion model. Non-uniformity of the particle distribution is increased by raising volume fraction and Reynolds number. Concentration distribution was obtained using discrete phase method and was compared with the distribution employed for the dispersion model. When a uniform concentration is used in the dispersion model, error of prediction is expected to be increased. The thermal dispersion model, in which the particles have followed a non-uniform distribution, provides acceptable results in spite of its lower calculational time as compared to the two-phase approach.  相似文献   

19.
The dependence of thermal conductivity λ and heat capacity per unit volume pcp on temperature and pressure for poly(vinyl acetate) has been measured by a transient hot-wire probe technique. The measurements were made under pressures up to 0.5 GPa over a temperature range of 270–470 K. The temperature coefficient of thermal conductivity (? lnλ/?T)p was found to increase with pressure for both the liquid and the glassy state. The change in heat capacity per unit volume in the region of the glass-transition temperature was found to decrease with increasing pressure. The Ehrenfest relation does not explain the variation of the pressure coefficient of the glass-transition temperature.  相似文献   

20.
Journal of Thermal Analysis and Calorimetry - The convection heat transfer inside a tube filled with a porous material under the constant heat flux thermal boundary condition which is widely used...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号