首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了数值求解三维非定常变系数对流扩散方程的一种高精度全隐紧致差分格式,该格式在空间上具有四阶精度,时间具有二阶精度。为了克服传统迭代法在每一个时间步上迭代求解隐格式时收敛速度慢的缺点,采用多重网格加速技术,建立了适用于本文高精度全隐紧致格式的多重网格算法,从而大大加快了迭代收敛速度。数值实验结果验证了本文方法的精确性、稳定性和对高网格雷诺数问题的强适应性。  相似文献   

2.
A three-dimensional extension of the QUICK scheme adapted for the finite volume method and non-uniform grids is presented to handle convection-diffusion problems for high Peclet numbers and steep gradients. The algorithm is based on three-dimensional quadratic interpolation functions in which the transverse curvature terms are maintained and the diagonal dominance of the coefficient matrix is preserved. All formulae are explicitly given in an appendix. Results obtained with the classical upwind (UDS), the simplified QUICK (transverse terms neglected) and the present full QUICK schemes are given for two benchmark problems, one two-dimensional, steady state and the other three-dimensional, unsteady state. Both QUICK schemes are shown to give superior solutions compared with the UDS in terms of accuracy and efficiency. The full QUICK scheme performs better than the simplified QUICK, giving even for coarse grids acceptable results closer to the analytical solutions, while the computational time is not affected much.  相似文献   

3.
In this paper we present a class of semi‐discretization finite difference schemes for solving the transient convection–diffusion equation in two dimensions. The distinct feature of these scheme developments is to transform the unsteady convection–diffusion (CD) equation to the inhomogeneous steady convection–diffusion‐reaction (CDR) equation after using different time‐stepping schemes for the time derivative term. For the sake of saving memory, the alternating direction implicit scheme of Peaceman and Rachford is employed so that all calculations can be carried out within the one‐dimensional framework. For the sake of increasing accuracy, the exact solution for the one‐dimensional CDR equation is employed in the development of each scheme. Therefore, the numerical error is attributed primarily to the temporal approximation for the one‐dimensional problem. Development of the proposed time‐stepping schemes is rooted in the Taylor series expansion. All higher‐order time derivatives are replaced with spatial derivatives through use of the model differential equation under investigation. Spatial derivatives with orders higher than two are not taken into account for retaining the linear production term in the convection–diffusion‐reaction differential system. The proposed schemes with second, third and fourth temporal accuracy orders have been theoretically explored by conducting Fourier and dispersion analyses and numerically validated by solving three test problems with analytic solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A high‐order Padé alternating direction implicit (ADI) scheme is proposed for solving unsteady convection–diffusion problems. The scheme employs standard high‐order Padé approximations for spatial first and second derivatives in the convection‐diffusion equation. Linear multistep (LM) methods combined with the approximate factorization introduced by Beam and Warming (J. Comput. Phys. 1976; 22 : 87–110) are applied for the time integration. The approximate factorization imposes a second‐order temporal accuracy limitation on the ADI scheme independent of the accuracy of the LM method chosen for the time integration. To achieve a higher‐order temporal accuracy, we introduce a correction term that reduces the splitting error. The resulting scheme is carried out by repeatedly solving a series of pentadiagonal linear systems producing a computationally cost effective solver. The effects of the approximate factorization and the correction term on the stability of the scheme are examined. A modified wave number analysis is performed to examine the dispersive and dissipative properties of the scheme. In contrast to the HOC‐based schemes in which the phase and amplitude characteristics of a solution are altered by the variation of cell Reynolds number, the present scheme retains the characteristics of the modified wave numbers for spatial derivatives regardless of the magnitude of cell Reynolds number. The superiority of the proposed scheme compared with other high‐order ADI schemes for solving unsteady convection‐diffusion problems is discussed. A comparison of different time discretizations based on LM methods is given. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A comparative study of seven discretization schemes for the equations describing convection-diffusion transport phenomena is presented. The (differencing) schemes considered are the conventional central- and upwind-difference schemes, together with the Leonard,1 Leonard upwind1 and Leonard super upwind difference1 schemes. Also tested are the so called locally exact difference scheme2 and the quadratic-upstream difference scheme.3,4 In multidimensional problems errors arise from ‘false-diffusion’ and function approximations. It is asserted that false diffusion is essentially a multidimensional source of error. No mesh constraints are associated with errors in function approximation and discretization. Hence errors associated with discretization only may be investigated via one-dimensional problems. Thus, although the above schemes have been tested for one- and two-dimensional flows with sources, only the former are presented here. For 1D flows, the Leonard super upwind difference scheme and the locally exact scheme are shown to be far superior in accuracy to the others at all Peclet numbers and for most source distributions, for the test cases considered. Furthermore, the latter is shown to be considerably cheaper in computational terms than the former. The stability of the schemes and their CPU time requirements are also discussed.  相似文献   

6.
A comparative study of eight discretization schemes for the equations describing convection-diffusion transport phenomena is presented. The (differencing) schemes considered are the conventional central, upwind and hybrid difference schemes,1,2 together with the quadratic upstream,3,4 quadratic upstream extended4 and quadratic upstream extended revised difference4 schemes. Also tested are the so called locally exact difference scheme5 and the power difference scheme.6 In multi-dimensional problems errors arise from ‘false diffusion’ and function approximations. It is asserted that false diffusion is essentially a multi-dimensional source of error. Hence errors associated with false diffusion may be investigated only via two- and three-dimensional problems. The above schemes have been tested for both one- and two-dimensional flows with sources, to distinguish between ‘discretization’ errors and ‘false diffusion’ errors.7 The one-dimensional study is reported in Reference 7. For 2D flows, the quadratic upstream difference schemes are shown to be superior in accuracy to the others at all Peclet numbers, for the test cases considered. The stability of the schemes and their CPU time requirements are also discussed.  相似文献   

7.
A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform grids are assessed. Three well-known bench mark convection-diffusion problems and a fluid flow problem are revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non-uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is properly chosen.  相似文献   

8.
The incompressible, viscous flow over two-dimensional elliptic airfoils oscillating in pitch at large angles of attack, such that flow separation occurs, has been simulated numerically for a Reynolds number of 3000. A vortex method is used to solve the two-dimensional Navier–Stokes equations in vorticity/stream-function form using a time-marching approach. Using an operator-splitting method the convection and diffusion equations are solved sequentially at each time step. The convection equation is solved using a vortex-in-cell method, and the diffusion equation using a second-order ADI finite-difference scheme. Elliptic profiles are obtained by mapping a circle in a computational domain into the physical domain using a Joukowski transformation. The effects of several parameters on the flow field are considered, such as: frequency of oscillation, mean angle of attack, location of pitch-axis and the thickness ratio of the ellipse. The results obtained are shown to compare favourably with available experimental results.  相似文献   

9.
In order to obtain stable and accurate numerical solutions for the convection-dominated steady transport equations, we propose a criterion for constructing numerical schemes for the convection term that the roots of the characteristic equation of the resulting difference equation have poles. By imposing this criterion on the difference coefficients of the convection term, we construct two numerical schemes for the convection-dominated equations. One is based on polynomial differencing and the other on locally exact differencing. The former scheme coincides with the QUICK scheme when the mesh Reynolds number (Rm) is $\mathop \[{\textstyle{{\rm 8} \over {\rm 3}}}\] $, which is the critical value for its stability, while it approaches the second-order upwind scheme as Rm goes to infinity. Hence the former scheme interpolates a stable scheme between the QUICK scheme at Rm = $\mathop \[{\textstyle{{\rm 8} \over {\rm 3}}}\] $ and the second-order upwind scheme at Rm = ∞. Numerical solutions with the present new schemes for the one-dimensional, linear, steady convection-diffusion equations showed good results.  相似文献   

10.
建立了非规则区域的有限分析5点格式,增加了有限分析法对不规则边界的适应性。应用所提出的方法对水利工程中常见的有压和无压流动进行了计算,与实验和前人的计算结果相比较,本文的方法都能得到较为满意的结果。本文的计算格式也可以应用到其他非规则区域的计算中。  相似文献   

11.
A new scheme for convection term discretization is developed, called VONOS (variable-order non-oscillatory scheme). The development of the scheme is based on the behaviour of well-known non-oscillatory schemes in the pure convection of a step profile test case. The new scheme is a combination of the QUICK and BSOU (bounded second-order upwind) schemes. These two schemes do not have the same formal order of accuracy and for that reason the formal order of accuracy of the new scheme is variable. The scheme is conservative, bounded and accurate. The performance of the new scheme was assessed in three test cases. The results showed that it is more accurate than currently used higher-order schemes, so it can be used in a general purpose algorithm in order to save computational time for the same level of accuracy. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the vorticity/stream-function form. By applying an operator-splitting method, the “convection” and “diffusion” equations are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle in the computational domain into the physical domain through a Joukowski transformation. The effects of several parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.  相似文献   

13.
The Modified Galerkin Method (MGM) has been proposed as one of the most efficient methods for two-dimensional convection-diffusion equations. In the MGM, the non-symmetric matrices, which are derived from the convection term in the Galerkin formulation, are not used, and an artificial diffusion is introduced through an error analysis approach to improve its discretization accuracy in both time and space directions. In this study, the MGM is applied for two-dimensional viscous fluid flow analysis, and the driven cavity flow problems are solved up to Reynolds number of 10,000 using the vorticity-stream function formulation and non-uniform meshes. The results show the effectiveness of MGM.  相似文献   

14.
New implicit finite difference schemes for solving the time-dependent incompressible Navier-Stokes equations using primitive variables and non-staggered grids are presented in this paper. A priori estimates for the discrete solution of the methods are obtained. Employing the operator approach, some requirements on the difference operators of the scheme are formulated in order to derive a scheme which is essentially consistent with the initial differential equations. The operators of the scheme inherit the fundamental properties of the corresponding differential operators and this allows a priori estimates for the discrete solution to be obtained. The estimate is similar to the corresponding one for the solution of the differential problem and guarantees boundedness of the solution. To derive the consistent scheme, special approximations for convective terms and div and grad operators are employed. Two variants of time discretization by the operator-splitting technique are considered and compared. It is shown that the derived scheme has a very weak restriction on the time step size. A lid-driven cavity flow has been predicted to examine the stability and accuracy of the schemes for Reynolds number up to 3200 on the sequence of grids with 21 × 21, 41 × 41, 81 × 81 and 161 × 161 grid points.  相似文献   

15.
A finite difference scheme based on the operator-splitting technique with cubic spline functions is derived for solving the two-dimensional Burgers equations in ‘inhomogeneous’ form. The scheme is of first-order accuracy in time and second-order accuracy in space direction and is unconditionally stable. The numerical results are obtained with severe/moderate gradients in the initial and boundary conditions and the steady state solutions are plotted for different values of the parameters. It is concluded that the resulting scheme works very well even in the case of very severe gradient in the solution. Also, the general nature of the scheme provides a wider application in the solution of non-linear problems.  相似文献   

16.
We consider the one-dimensional two-phase flow including capillary effects through a heterogeneous porous medium. The heterogeneity is due to the spatial variation of the absolute permeability and the porosity. Both these quantities are assumed to be piecewise constant. At interfaces where the rock properties are discontinuous, we derive, by a regularisation technique, conditions to match the values of the saturation on both sides. There are two conditions: a flux condition and an extended pressure condition. Applying these conditions we show that trapping of the wetting phase may occur near heterogeneities. To illustrate the behaviour of the saturation we consider a time-dependent diffusion problem without convection, a stationary convection-diffusion problem, and the full time-dependent convection-diffusion problem (numerically). In particular the last two problems explicitly show the trapping behaviour.  相似文献   

17.
Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction.  相似文献   

18.
A particle–gridless hybrid method for the analysis of incompressible flows is presented. The numerical scheme consists of Lagrangian and Eulerian phases as in an arbitrary Lagrangian–Eulerian (ALE) method, where a new‐time physical property at an arbitrary position is determined by introducing an artificial velocity. For the Lagrangian calculation, the moving‐particle semi‐implicit (MPS) method is used. Diffusion and pressure gradient terms of the Navier–Stokes equation are calculated using the particle interaction models of the MPS method. As an incompressible condition, divergence of velocity is used while the particle number density is kept constant in the MPS method. For the Eulerian calculation, an accurate and stable convection scheme is developed. This convection scheme is based on a flow directional local grid so that it can be applied to multi‐dimensional convection problems easily. A two‐dimensional pure convection problem is calculated and a more accurate and stable solution is obtained compared with other schemes. The particle–gridless hybrid method is applied to the analysis of sloshing problems. The amplitude and period of sloshing are predicted accurately by the present method. The range of the occurrence of self‐induced sloshing predicted by the present method shows good agreement with the experimental data. Calculations have succeeded even for the higher injection velocity range, where the grid method fails to simulate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Asymmetric spatial implicit high‐order schemes are introduced and, based on Fourier analysis, the dispersion and damping are calculated depending on the asymmetry parameter. The derived schemes are then applied to a number of inviscid problems. For incompressible convection problems the proposed asymmetric schemes (applied as upwind schemes) lead to stable and accurate results. To extend the applicability of the proposed schemes to compressible problems acoustic upwinding is used. In a two‐dimensional compressible flow example acoustic and conventional upwinding are combined. Evaluation of all presented results leads to the conclusion that, of the studied schemes, the implicit fifth order upwinding scheme with an asymmetry parameter of about 0.5 leads to the optimal results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
通常认为CBC准则是差分格式有界性的充分条件。本文采用满足与不满足CBC准则的两种高阶差分格式对非线性问题进行了求解,重新讨论了格式有界性与CBC准则的关系,得出结论如下:在数值方法稳定的前提下,CBC准则下的有界模式是求解有界的充分条件,而非必要条件;此外,文章还分析了张涵信三阶精度格式的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号