首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对双色波浪与均匀流相互作用问题,采用时域高阶边界元方法建立自由水面满足完全非线性边界条件的数学模型。求解中采用混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶龙格库塔方法更新下一时间步的波面和速度势。通过与已发表试验结果对比,验证了本模型的准确性。通过数值计算研究了水流参数对各组成波及衍生的高阶波幅值、波浪和水流间能量交换的影响规律。  相似文献   

2.
Surface tension plays a significant role at the dynamic interface of free‐surface flows especially at the microscale in capillary‐dominated flows. A model for accurately predicting the formation of two‐dimensional viscous droplets in vacuum or gas of negligible density and viscosity resulting from axisymmetric oscillation due to surface tension is solved using smoothed particle hydrodynamics composed of the Navier‐Stokes system and appropriate interfacial conditions for the free‐surface boundaries. The evolution of the droplet and its free‐surface interface is tracked over time to investigate the effects of surface tension forces implemented using a modified continuous surface force method and is compared with those performed using interparticle interaction force. The dynamic viscous fluid and surface tension interactions are investigated via a controlled curvature model and test cases of nonsteady oscillating droplets; attention is focused here on droplet oscillation that is released from an initial static deformation. Accuracy of the results is attested by demonstrating that (i) the curvature of the droplet that is controlled; (ii) uniform distribution of fluid particles; (iii) clean asymmetric forces acting on the free surface; and (iv) nonsteady oscillating droplets compare well with analytical and published experiment findings. The advantage of the proposed continuous surface force method only requires the use of physical properties of the fluid, whereas the interparticle interaction force method is restricted by the requirement of tuning parameters.  相似文献   

3.
A Lagrangian-type panel method in the time domain is proposed for potential flows with a moving free surface. After a spatial semi-discretization with a low-order scheme, the instantaneous velocity-potential and normal displacement on the moving free surface are obtained by means of a time-marching scheme. The kinematic and dynamic boundary conditions at the free surface are non-linear restrictions over the related Ordinary Differential Equation (ODE) system and, in order to handle them, an alternative Steklov-Poincaré operator technique is proposed. The method is applied to sloshing like flow problems.  相似文献   

4.
We develop one‐way coupling methods between a Boussinesq‐type wave model based on the discontinuous Galerkin finite element method and a free‐surface flow model based on a mesh‐free particle method to strike a balance between accuracy and computational cost. In our proposed model, computation of the wave model in the global domain is conducted first, and the nonconstant velocity profiles in the vertical direction are reproduced by using its results. Computation of the free‐surface flow is performed in a local domain included within the global domain with interface boundaries that move along the reproduced velocity field in a Lagrangian fashion. To represent the moving interfaces, we used a polygon wall boundary model for mesh‐free particle methods. Verification and validation tests of our proposed model are performed, and results obtained by the model are compared with theoretical values and experimental results to show its accuracy and applicability.  相似文献   

5.
利用满足Laplace方程,线性化自由面条件及无穷远处条件的Havelock兴波源涵数,建立了关于常航速稳态船波势函数的边界积分方程.针对这个积分方程,建立了相应的数值计算方法,编制了一般三维问题的边界元法计算机程序,可用来计算全潜和半潜物体的稳态绕流场及船舶兴波阻力.  相似文献   

6.
This paper describes a method for simulation of viscous flows with a free surface around realistic hull forms with a transom, which has been developed based on a FINFLO RANS solver with a moving mesh. A dry‐transom model is proposed and implemented for the treatment of flows off the transom. The bulk RANS flow with the artificial compressibility is solved by a cell‐centred finite volume multigrid scheme and the free surface deformed by wave motions is tracked by satisfying the kinematic and dynamic free‐surface boundary conditions on the actual location of the surface. The effects of turbulence on flows are evaluated with the Baldwin–Lomax turbulence model without a wall function. A test case is modern container ship model with a transom, the Hamburg Test Case. The calculated results are validated and they agree well with the measured results in terms of the free‐surface waves and the total resistance coefficient. Furthermore, the numerical solutions successfully captured many important features of the complicated interaction of the free surface with viscous flows around transom stern ships. In addition, the convergence performance and the grid refinement studies are also investigated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A mesh‐free particle method, based on the moving particle semi‐implicit (MPS) interaction model, has been developed for the simulation of two‐dimensional open‐boundary free‐surface flows. The incompressibility model in the original MPS has been replaced with a weakly incompressible model. The effect of this replacement on the efficiency and accuracy of the model has been investigated. The new inflow–outflow boundary conditions along with the particle recycling strategy proposed in this study extend the application of the model to open‐boundary problems. The final model is able to simulate open‐boundary free surface flow in cases of large deformation and fragmentation of free surface. The models and proposed algorithms have been validated and applied to sample problems. The results confirm the model's efficiency and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.  相似文献   

10.
This paper presents the calculated results for three classes of typical modern ships in modelling of ship‐generated waves. Simulations of turbulent free‐surface flows around ships are performed in a numerical water tank, based on the FINFLO‐RANS SHIP solver developed at Helsinki University of Technology. The Reynolds‐averaged Navier–Stokes (RANS) equations with the artificial compressibility and the non‐linear free‐surface boundary conditions are discretized by means of a cell‐centred finite‐volume scheme. The convergence performance is improved with the multigrid method. A free surface is tracked using a moving mesh technology, in which the non‐linear free‐surface boundary conditions are given on the actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant and a tanker. The calculated results are compared with the experimental data available in the literature in terms of the wave profiles, wave pattern, and turbulent flow fields for two turbulence models, Chien's low Reynolds number k–εmodel and Baldwin–Lomax's model. Furthermore, the convergence performance, the grid refinement study and the effect of turbulence models on the waves have been investigated. Additionally, comparison of two types of the dynamic free‐surface boundary conditions is made. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

11.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The focus of this paper is the analysis of spatially two-dimensional non-linear free surface problems. The critical aspects of the problem concern the treatment of the non-linear free surface, the body boundary condition for large motions and the imposition of suitable radiation conditions. To address such complexities, time domain simulation was chosen as the method of analysis. With the use of a finite domain for simulation, a major concern is with the radiation condition to be applied at the open or truncation boundary. For the two-dimensional problem at hand, no theoretical radiation conditions are known to exist. An extension of the Orlanski open boundary condition, based on phase velocity determination at the free surface, is proposed. Three categories of problems were analysed using numerical simulation-namely, freely moving steep waves, waves over a submerged body and forced body motion. Simulation results have been compared with linear theory and experiments.  相似文献   

14.
In this paper, a novel size-dependent functionally graded(FG) cylindrical shell model is developed based on the nonlocal strain gradient theory in conjunction with the Gurtin-Murdoch surface elasticity theory. The new model containing a nonlocal parameter, a material length scale parameter, and several surface elastic constants can capture three typical types of size effects simultaneously, which are the nonlocal stress effect, the strain gradient effect, and the surface energy effects. With the help of Hamilton's principle and first-order shear deformation theory, the non-classical governing equations and related boundary conditions are derived. By using the proposed model, the free vibration problem of FG cylindrical nanoshells with material properties varying continuously through the thickness according to a power-law distribution is analytically solved, and the closed-form solutions for natural frequencies under various boundary conditions are obtained. After verifying the reliability of the proposed model and analytical method by comparing the degenerated results with those available in the literature, the influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-to-radius ratio, and surface effects on the vibration characteristic of functionally graded cylindrical nanoshells are examined in detail.  相似文献   

15.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This work is concerned with the development of a numerical method capable of simulating two-dimensional viscoelastic free surface flows governed by the non-linear constitutive equation PTT (Phan-Thien–Tanner). In particular, we are interested in flows possessing moving free surfaces. The fluid is modelled by a marker-and-cell type method and employs an accurate representation of the fluid surface. Boundary conditions are described in detail and the full free surface stress conditions are considered. The PTT equation is solved by a high order method which requires the calculation of the extra-stress tensor on the mesh contour. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. In order to validate the numerical method fully developed flow in a two-dimensional channel was simulated and the numerical solutions were compared with known analytic solutions. Convergence results were obtained throughout by using mesh refinement. To demonstrate that complex free surface flows using the PTT model can be computed, extrudate swell and a jet flowing onto a rigid plate were simulated.  相似文献   

17.
Satisfying the boundary conditions at the free surface may impose severe difficulties to the computation of turbulent open-channel flows with finite-volume or finite-element methods, in particular, when the flow conditions are nearly critical. It is proposed to apply an iteration procedure that is based on an asymptotic expansion for large Reynolds numbers and Froude numbers close to the critical value 1.The iteration procedure starts by prescribing a first approximation for the free surface as it is obtained from solving an ODE that has been derived previously by means of an asymptotic expansion (Grillhofer and Schneider, 2003). The numerical solution of the full equations of motion then gives a surface pressure distribution that differs from the constant value required by the dynamic boundary condition. To determine a correction to the elevation of the free surface we next solve an ODE that is obtained from the asymptotic analysis of the flow with a prescribed pressure disturbance at the free surface. The full equations of motion are then solved for the corrected surface, and the procedure is repeated until criteria of accuracy for surface elevation and surface pressure, respectively, are satisfied.The method is applied to an undular hydraulic jump as a test case.  相似文献   

18.
An FEM (Finite Element Method) based damping estimation method of liquid sloshing with small amplitude in rigid container is proposed. Damping of the sloshing is affected by many factors and some of them are very complicated. Therefore, this paper aims to provide an estimation range, instead of computing the exact value of damping. This method will consider the dissipation at wall, in the interior, and at the contaminated free surface. Owing to the complexity of viscous damping at the free surface, damping of two extreme conditions are computed to estimate the range of actual damping. An iterative algorithm is designed to solve a special general eigenvalue problem. Comparing the computation results with experimental results, it is found that most of the experimental results are within the range of the numerical estimation. Therefore, the method is effective in estimating the range of the damping of liquid sloshing with small amplitude in rigid container. The project supported by the National Natural Science Foundation of China (10172048) The English text was polished by Keren Wang.  相似文献   

19.
基于移动粒子半隐式法的表面张力模拟   总被引:3,自引:0,他引:3  
采用移动粒子半隐式法(MPS)模拟了受表面张力影响的自由面流动。表面张力的计算采取了一种较适合于MPS方法的表面自由能模型。方形液滴振荡和射流断裂的模拟结果分别与理论分析和试验结果一致,同时进行了三维射流注水模拟,从而验证了MPS方法结合该表面张力模型可以有效、方便地进行自由面流动中表面张力现象的模拟。  相似文献   

20.
提出了一种SPH应力修正算法,即模型中的拉应力和压应力分别采用不同的插值核函数和状态方程来处理,改善应力稳定性问题。介绍了一种改进的Quintic核函数,用于改善模型中压应力的稳定性。通过增加钟型核函数的光滑长度,改善模型中拉应力的稳定性。采用该应力修正算法模拟了无重力条件下方形液滴的震荡变形过程,对比分析了不同算法的模拟结果。此外,为进一步验证算法的适用性,模拟了溃坝算例。研究表明,改进的Quintic型核函数明显改善了粒子聚集现象,该SPH应力修正方法可以使液滴具有更均匀的粒子分布以及更光滑的自由表面,有效改善了SPH方法中的压应力不稳定作用以及自由表面流的模拟精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号