首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of the quench currents on the ramp rate was studied for four small NbTi coils. Two pairs of superconducting coils were tested. In one pair the SC 0.85-mm-dia wire with 2970 filaments was used, in the other two coils the SC wire contained 8910 filaments of smaller size. Two coils (with different number of filaments) contained 4.9 vol % of Large-Heat-Capacity Substance (LHCS) in the form of tiny powder evenly distributed over the winding volume, therefore their heat capacity at 4.2 K was an order of magnitude larger than that for coils without LHCS. The LHCS was introduced into the winding in a mixture with epoxy resin (“wet” winding). When the self-magnetic field varied with a rate of ≥5 T/s, premature quenches were observed in the central turns of the undoped coil made of a wire with 2970 filaments. These transitions are likely to be caused by magnetic flux jumps. In the LHCS-doped coil made of the same wire, the quenches took place at currents two to three times higher, since the sample was heated up to a critical temperature because of electrical losses (as confirmed by calculations). Thus, the improved stability of the LHCS-containing coils not only against long-term (0.1–1.0 s) disturbances but also against much shorter (10–100 μs) jumps of the magnetic flux is demonstrated.  相似文献   

2.
We demonstrate the importance of collective behaviour in two identical two-level atoms. When the atoms become very close together a cascade three-level atom analysis can be adopted to show the increasing possibility of simultaneous jumps. Due to the dipole-dipole interaction the intermediate one-atom excited state is detuned by a large amount when the atoms are close together but leaving the upper two-atom excited state in two-photon resonance. The relative importance of multiple jumps compared with stepwise independent jumps is then changed dramatically.  相似文献   

3.
《Composite Interfaces》2013,20(2-3):319-341
The morphology and mechanical properties of reconstituted wood board waste-polyethylene composites were studied using virgin polyethylene (PE) and 2 wt% maleic anhydride (MA) modified polyethylene (MAPE) as matrices. Although the wood waste (WW) and PE are not compatible with each other, dynamic mechanical analyses (DMA) show considerable shifting in the α-transition temperature and crystallisation temperature (T c) of PE in the unmodified composites, indicating physical interaction between PE and WW. The increase in crystallinity with increasing WW content up to 50 wt% indicates that WW is a potential nucleating agent for PE. However, the tensile strength of the unmodified composites gradually decreases with WW content, indicating that the improvement in interface adhesion is essential for WW to be used as reinforcing fillers. Fourier transform infrared spectroscopic (FTIR) results indicate that MAPE interacts with WW through esterification and hydrogen bonding to form good adhesion between the two phases. Inward shifting in glass transition temperature (T g) for the MAPE-based composites containing less than 60 wt% WW indicates that WW and MAPE are partially compatible with each other. SEM micrographs of MAPE-based composites provide further evidence for this mechanism. The tensile strength of the MAPE-based composites is clearly higher than that of the virgin PE-based composites.  相似文献   

4.
Magnetization of ferromagnetic materials commonly occurs via random jumps of domain walls between pinning sites, a phenomenon known as the Barkhausen effect. Using strongly focused light pulses of appropriate power and duration we demonstrate the ability to selectively activate single jumps in the domain wall propagation in (Ga,Mn)As, manifesting itself as a discrete photoinduced domain wall creep as a function of illumination time. The propagation velocity can be increased over 7 orders of magnitude varying the illumination power density and the magnetic field.  相似文献   

5.
6.
The one-dimensional walk of a particle executing instantaneous jumps between the randomly distributed “atoms” at which it resides for a random time is considered. The random distances between the neighboring atoms and the time intervals between jumps are mutually independent. The asymptotic (t → ∞) behavior of this process is studied in connection with the problem of interpretation of the generalized fractional diffusion equation (FDE). It is shown that the interpretation of the FDE as the equation describing the walk (diffusion) in a fractal medium is incorrect in the model problem considered. The reason is that the FDE implies that the consecutive jumps (fractal walk) are independent, whereas they are correlated in the case under consideration: a particle leaving an atom in the direction opposite to the preceding direction traverses the same path until arriving at the atom.  相似文献   

7.
Large Hall resistance jumps are observed in microdevices patterned from epitaxial (Ga,Mn)As layers when subjected to a swept, in-plane magnetic field. This giant planar Hall effect is 4 orders of magnitude greater than previously observed in metallic ferromagnets. This enables extremely sensitive measurements of the angle-dependent magnetic properties of (Ga,Mn)As. The magnetic anisotropy fields deduced from these measurements are compared with theoretical predictions.  相似文献   

8.
We show that sample paths of Brownian motion (and other stable processes) intersect the same sets as certain random Cantor sets constructed by a branching process. With this approach, the classical result that two independent Brownian paths in four dimensions do not intersect reduces to the dying out of a critical branching process, and estimates due to Lawler (1982) for the long-range intersection probability of several random walk paths, reduce to Kolmogrov's 1938 law for the lifetime of a critical branching process. Extensions to random walks with long jumps and applications to Hausdorff dimension are also derived.  相似文献   

9.
Laser interferometry is used to study micrometer-scale creep-strain nonuniformities (jumps) that occur during compression of metals (Ag, Al, Bi, Cu, Pb, Sn, Zn) and LiF: Mg crystals. The strain rate is found to vary periodically. The average magnitude of deformation L over one period and the variation of L with the total strain are determined. Correlations are found to exist between L and the Mg content in the LiF crystals, between L and the grain size in the metals, and between the magnitude of small jumps and the Burgers vector in the metals.  相似文献   

10.
11.
12.
13.
For different settings of a control parameter, a chaotic system can go from a region with two separate stable attractors (generalized bistability) to a crisis where a chaotic attractor expands, colliding with an unstable orbit. In the bistable regime jumps between independent attractors are mediated by external perturbations; above the crisis, the dynamics includes visits to regions formerly belonging to the unstable orbits and this appears as random bursts of amplitude jumps. We introduce a control method which suppresses the jumps in both cases by filtering the specific frequency content of one of the two dynamical objects. The method is tested both in a model and in a real experiment with a CO2 laser.  相似文献   

14.
We calculate the geometric phase associated with the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main sources of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e., it is independent of the number of jumps determined by the dephasing operator.  相似文献   

15.
Experimental DC (VSM) and theoretical hysteresis loops of a ferromagnetic amorphous wire with a deformation in the middle or exposed to local magnetic fields are investigated. Hysteresis loops show two-stage Barkhausen jumps and staircase relaxation. With a local field at the same position, the loop drastically looses its shape and symmetry depending on the magnitude and the direction of the magnetic bias. A model to explain this behavior is proposed. The proposed model is based on the calculation of the magnetic moment distribution of the domain as a result of domain wall motion and nucleation in the inner core of a ferromagnetic wire and is in a good agreement with the experimental results.  相似文献   

16.
We investigate the relaxation dynamics of nonequilibrium carriers in organic conductors κ-(BEDT-TTF)(2)Cu[N(CN)(2)]X (X=Br and Cl) using ultrafast time-resolved optical spectroscopy. The dynamics for both salts show similar temperature dependences, which is well characterized by the carrier relaxation across the pseudogap (PG) of the magnitude Δ(PG) ≈ 16 meV for Br salt and 7.0 meV for Cl salt. On the other hand, only the Br salt shows an abrupt increase of the decay time at low temperature, indicating an additional decay component associated with the superconducting (SC) gap below T(c). The fluence dependent dynamics at low temperature evidences the superposition of the SC component onto the PG component. These results indicate a metallic-insulating phase separation in the Br salt triggered by photoexcited nonequilibrium carriers.  相似文献   

17.
ZnCdSe/ZnSe非对称双量子阱中的光学特性研究   总被引:4,自引:2,他引:2       下载免费PDF全文
用LP-MOCVD技术在GaAs衬底上外延生长了ZnCdSe/ZnSe非对称双量子阱(ADQW)结构。通过ps时间分辨光谱、吸收光谱、发射光谱等的研究得到了如下的结果:在弱激发下,观测到ADQW结构中的激子隧穿现象;在强激发下,在ADQW结构中发现了一个内建电场,它将影响激子隧穿;首次观测到由激子隧穿引起的在一定温度范围内宽阱的发光强度随温度上升而增加的现象;首次观测到该ADQW结构中来自宽阱的光泵受激发射。  相似文献   

18.
Proximity effects in normal metal/insulator/ferromagnetic semiconductor/superconductor (NM/I/FS/SC) and NM/I/SC/FS junctions are studied based on an extended Blonder-Tinkham-Klapwijk (BTK) theory. It is found that the magnitude of the proximity effects depends to a great extent on the mismatches of the effective mass and band between the FS and SC. For NM/I/FS/SC junction, the transition of the tunneling conductance from “0” to “π” state is determined by the mass, magnetic exchange energy in FS and the thickness of FS. For NM/I/SC/FS junctions, the conductance spectrum is spin-dependent, indicating a local coexistence of weak ferromagnetism and s-wave superconductivity.  相似文献   

19.
Yang CH  Tsen CZ 《Ultrasonics》2006,44(Z1):e1471-e1474
Wedge waves (WW) are guided acoustic waves propagating along the tip of a wedge, with energy tightly confined near the apex. This study is focused on exploring the dispersion behaviors of WW propagating along a bilinear wedge (BW). A BW is wedge with a cross section of two apex angles, compared with a linear wedge (LW) having a single apex angle. In the literature, many studies regarding to the dispersion behaviors of ASF modes are reported for LW, but not for BW. In this study, a combined experimental and numerical stidy is used to investigate the dispersion behavior of WW propagating in BW's. It is found out that WW in a BW is a result of mode coupling between the two WW's corresponding to simple wedges with the two apex angles of the BW.  相似文献   

20.
A possible explanation about the coexistence of ferromagnetism (FM) and superconductivity (SC) based on a two parameters mean field model in a two-dimensional system is discussed. The key feature of this model is that there are two independent parameters which are responsible for ferromagnetism and superconductivity, respectively. We point out that the coexisting FM and s-wave pairing SC state is energetically not favorable among all possible state. We generalize the two parameter model to include the coexistence of FM with p-wave SC. We find that the phase diagram is not consistent with what experimentally discovered in UGe2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号