首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Carbon nanotube junctions are predicted to exhibit negative differential resistance, with very high peak-to-valley current ratios even at room temperature. We treat both nanotube p-n junctions and undoped metal-nanotube-metal junctions, calculating quantum transport through the self-consistent potential within a tight-binding approximation. The undoped junctions in particular may be suitable for device integration.  相似文献   

2.
We analyze the optical response of small-diameter (?1 nm) semiconducting carbon nanotubes under the exciton-surface-plasmon coupling. Calculated optical absorption lineshapes exhibit the significant line (Rabi) splitting ∼0.1-0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We believe this effect may be used for the development of carbon nanotube based tunable optoelectronic device applications in areas such as nanophotonics and cavity quantum electrodynamics.  相似文献   

3.
We propose a novel quantum device in which a double carbon nanotube is embedded inside a suspended semiconductor slab. We theoretically investigate, in terms of a perturbation treatment based on a unitary transformation, the dynamics of the charge qubit in relation to the device. The phonon-induced decoherence and the quality of the qubit are analyzed in detail after a derivation of the phonon spectral density. It is shown that a charge qubit of high quality can be obtained due to the inhibition of the electron–phonon coupling in the confined structure of the slab, suggesting that the novel quantum device is a good candidate for quantum information processing.  相似文献   

4.
We investigate radio-frequency (rf) reflectometry in a tunable carbon nanotube double quantum dot coupled to a resonant circuit. By measuring the in-phase and quadrature components of the reflected rf signal, we are able to determine the complex admittance of the double quantum dot as a function of the energies of the single-electron states. The measurements are found to be in good agreement with a theoretical model of the device in the incoherent limit. In addition to being of fundamental interest, our results present an important step forward towards noninvasive charge and spin state readout in carbon nanotube quantum dots.  相似文献   

5.
通过化学裁剪法打开碳纳米管获得了粒径一致、性能稳定、具有蓝色荧光的石墨烯量子点。该方法属于化学溶液法,具有成本低廉、工艺简单、条件易控等优势。将该样品与半导体聚合物按一定比例混溶,通过旋涂技术形成基于石墨烯量子点掺杂的聚合物复合薄膜,进而制成柔性存储器。该柔性可弯曲存储器具有低驱动电压、接近103的ON/OFF 比率、较好的循环次数,较好的重复性和稳定性。该研究结果为柔性有机存储器领域的研究展开了新的方向。  相似文献   

6.
周海亮  张民选  方粮 《物理学报》2010,59(7):5010-5017
由于导电沟道-源/漏电极界面处可能发生的载流子带间隧穿,传统类金属氧化物半导体(MOS)碳纳米管场效应管呈现双极性传输特性,极大影响了器件性能的提高及其在电路中的应用.为获得具有理想单极性传输特性的类MOS碳纳米管场效应管,本文提出了一种基于双栅材料的器件设计方法.模拟结果表明,通过合理选取调节电极材料,在不影响器件亚阈值斜率的同时,该设计方法不仅能使开关电流比增大6—9个数量级,有效调节阈值范围,而且能有效消除传统类MOS碳纳米管场效应管的双极性传输特性.进一步研究表明,该设计所获得的器件性能提高与调节  相似文献   

7.
We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube.  相似文献   

8.
We propose a scheme for coherent rotation of the valley isospin of a single electron confined in a carbon nanotube quantum dot. The scheme exploits the ubiquitous atomic disorder of the nanotube crystal lattice, which induces time-dependent valley mixing as the confined electron is pushed back and forth along the nanotube axis by an applied ac electric field. Using experimentally determined values for the disorder strength we estimate that valley Rabi oscillations with a period on the nanosecond time scale are feasible. The valley resonance effect can be detected in the electric current through a double quantum dot in the single-electron transport regime.  相似文献   

9.
We report resonant multiple Andreev reflections in a multiwall carbon nanotube quantum dot coupled to superconducting leads. The position and magnitude of the subharmonic gap structure is found to depend strongly on the level positions of the single-electron states which are adjusted with a gate electrode. We discuss a theoretical model of the device and compare the calculated differential conductance with the experimental data.  相似文献   

10.
Relatively low magnetic fields applied parallel to the axis of a chiral single-walled carbon nanotube are found causing large modulations to the p channel or valence band conductance of the nanotube in the Fabry-Perot interference regime. Beating in the Aharonov-Bohm type of interference between two field-induced nondegenerate subbands of spiraling electrons is responsible for the observed modulation with a pseudoperiod much smaller than that needed to reach the flux quantum Phi0 = h/e through the nanotube cross section. We show that single-walled nanotubes represent the smallest cylinders exhibiting the Aharonov-Bohm effect with rich interference and beating phenomena arising from well-defined molecular orbitals reflective of the nanotube chirality.  相似文献   

11.
Photocurrents in nanotube p-n junctions are calculated using a nonequilibrium Green function quantum transport formalism. The short-circuit photocurrent displays band-to-band transitions and photon-assisted tunneling, and has multiple sharp peaks in the infrared, visible, and ultraviolet. The operation of such devices in the nanoscale regime leads to unusual size effects, where the photocurrent scales linearly and oscillates with device length. The oscillations can be related to the density of states in the valence band, a factor that also determines the relative magnitude of the photoresponse for different bands.  相似文献   

12.
We present transport measurements of ferromagnetically contacted carbon nanotubes. In both single- and multi-walled nanotube devices, a spin valve effect is observed due to spin-polarized transport. In one single-walled nanotube device, the spin-valve effect is suppressed as the influence of Coulomb charging is observed at around 10 K. To help understand the interplay between the Coulomb charging and the spin-polarized transport we investigated the temperature dependence of the carbon nanotube magnetoresistance.  相似文献   

13.
Spin-coherent quantum transport in carbon nanotube magnetic tunnel junctions is investigated theoretically. A spin-valve effect is found for metallic, armchair tubes, with a magnetoconductance ratio ranging up to 20%. Because of the finite length of the nanotube junctions, transport is dominated by resonant transmission. The magnetic tunnel junctions are found to have distinctly different transport behavior depending on whether or not the length of the tubes is commensurate with a 3N+1 rule, with N the number of basic carbon repeat units along the nanotube length.  相似文献   

14.
The current emission noise of a carbon nanotube quantum dot in the Kondo regime is measured at frequencies ν of the order or higher than the frequency associated with the Kondo effect k(B)T (K)/h, with TK the Kondo temperature. The carbon nanotube is coupled via an on-chip resonant circuit to a quantum noise detector, a superconductor-insulator-superconductor junction. We find for hν ≈ k(B)T(K) a Kondo effect related singularity at a voltage bias eV ≈ hν, and a strong reduction of this singularity for hν ≈ 3k(B)T(K), in good agreement with theory. Our experiment constitutes a new original tool for the investigation of the nonequilibrium dynamics of many-body phenomena in nanoscale devices.  相似文献   

15.
The Kondo effect and superconductivity are both prime examples of many-body phenomena. Here we report transport measurements on a carbon nanotube quantum dot coupled to superconducting leads that show a delicate interplay between both effects. We demonstrate that the superconductivity of the leads does not destroy the Kondo correlations on the quantum dot when the Kondo temperature, which varies for different single-electron states, exceeds the superconducting gap energy.  相似文献   

16.
We study the quantum molecular sieving of H2 and D2 through two nanotubes placed end-to-end. An analytic treatment, assuming that the particles have classical motion along the axis of the nanotube and are confined in a potential well in the radial direction, is considered. Using this idealistic model, and under certain conditions, it is found that this device can act as a complete sieve, allowing chemically pure deuterium to be isolated from an isotope mixture. We also consider a more realistic model of two carbon nanotubes and carry out molecular dynamics simulations using a Feynman-Hibbs potential to model the quantum effects on the dynamics of H2 and D2. Sieving is also observed in this case, but is caused by a different process.  相似文献   

17.
利用外加电场的方法,对多壁碳纳米管的结构稳定性进行了研究.结果表明当场强达到30 V/nm时,碳纳米管端部的结构失稳,端部碳原子间的π键被打开,外部原子开始进入到碳纳米管的结构中.利用电子显微镜作为纳米加工仪器,通过外加电场的方法在多壁碳纳米管的端部制备了非晶态碳纳米线,形成碳纳米管-纳米线复合结构.碳纳米管和纳米线结合处的σ键作为绝缘界面,形成了电子输运的势垒.  相似文献   

18.
We have constructed four types single-wall carbon nanotube intramolecular junctions (IMJs) of (5,5)/(8,0), (5,5)/(10,0), (5,5)/(9,0)A, and (5,5)/(9,0)B along a common axis, and calculated their electronic and transport properties using a tight binding-based Green's function approach that is particular suitable for realistic calculation of electronic transport property in extended system. Our results show that quasi-localized states can appear in the metal/semiconductor heterojunctions ((5,5)/(8,0) and (5,5)/(10,0)junctions), which is desirable for the design of a quantum device; and the conductance of M-M IMJs is very sensitive to the connectivity of the matching tubes, certain configurations of connection completely stop the flow of electron, while others permit the transmission of the current through the interface. These results may have implications for the device assembly and manipulation process of all carbon nanotubes-based microelectronic elements. Received 14 January 2003 / Received in final form 25 February 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: lfyzz@yahoo.com.cn  相似文献   

19.
Starting from the Aviram–Ratner molecular diode design, we follow the progress of molecular electronics from simple discrete molecular devices towards quantum computing at the molecular scale. Discrete molecular devices like the electromechanical C60single-molecule amplifier and the nanotube transistor are described. Then, progresses towards intramolecular electronics where circuits and devices may be integrated in a single molecule are discussed. This requires the mastering of the long-range electron transfer effect (super-tunnelling phenomenon) and introduces new electronic circuit rules to create electronic functionnalities inside a single molecule. At this stage, intramolecular electronics can be viewed as a peculiar branch of quantum computing, using the decoherence effect, instead of avoiding it, to stabilize a computation within a single molecule.  相似文献   

20.
周梅  赵德刚 《物理学报》2008,57(7):4570-4574
研究了p-GaN层厚度对GaN基pin结构紫外探测器性能的影响.模拟计算表明:较厚的p-GaN层会减小器件的量子效率,然而同时也会减小器件的暗电流,较薄的p-GaN层会增加器件的量子效率,但是同时也增加了器件的暗电流.进一步的分析表明,金属和p-GaN之间的结电场是出现这种现象的根本原因.在实际的器件设计中,应该根据实际需要选择p型层的厚度. 关键词: GaN 紫外探测器 量子效率 暗电流  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号