首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Given a set X, $\mathsf {AC}^{\mathrm{fin}(X)}$ denotes the statement: “$[X]^{<\omega }\backslash \lbrace \varnothing \rbrace$ has a choice set” and $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )$ denotes the family of all closed subsets of the topological space $\mathbf {2}^{X}$ whose definition depends on a finite subset of X. We study the interrelations between the statements $\mathsf {AC}^{\mathrm{fin}(X)},$ $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega })},$ $\mathsf {AC}^{\mathrm{fin} (F_{n}(X,2))},$ $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ and “$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set”. We show:
  • (i) $\mathsf {AC}^{\mathrm{fin}(X)}$ iff $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega } )}$ iff $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set iff $\mathsf {AC}^{\mathrm{fin}(F_{n}(X,2))}$.
  • (ii) $\mathsf {AC}_{\mathrm{fin}}$ ($\mathsf {AC}$ restricted to families of finite sets) iff for every set X, $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set.
  • (iii) $\mathsf {AC}_{\mathrm{fin}}$ does not imply “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set($\mathcal {K}(\mathbf {X})$ is the family of all closed subsets of the space $\mathbf {X}$)
  • (iv) $\mathcal {K}(\mathbf {2}^{X})\backslash \lbrace \varnothing \rbrace$ implies $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ but $\mathsf {AC}^{\mathrm{fin}(X)}$ does not imply $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$.
We also show that “For every setX, “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every setX, $\mathcal {K}\big (\mathbf {[0,1]}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every product$\mathbf {X}$of finite discrete spaces,$\mathcal {K}(\mathbf {X})\backslash \lbrace \varnothing \rbrace$ has a choice set”.  相似文献   

2.
确定了一类中心循环的有限p-群G的自同构群.设G=X_3(p~m)~(*n)*Z_(p~(m+r)),其中m≥1,n≥1和r≥0,并且X_3(p~m)=x,y|x~(p~m)=y~(p~m)=1,[x,y]~(p~m)=1,[x,[x,y]]=[y,[x,y]]=1.Aut_nG表示Aut G中平凡地作用在N上的元素形成的正规子群,其中G'≤N≤ζG,|N|=p~(m+s),0≤s≤r,则(i)如果p是一个奇素数,那么AutG/Aut_nG≌Z_(p~((m+s-1)(p-1))),Aut_nG/InnG≌Sp(2n,Z_(p~m))×Z_(p~(r-s)).(ii)如果p=2,那么AutG/Aut_nG≌H,其中H=1(当m+s=1时)或者Z_(2~(m+s-2))×Z_2(当m+s≥2时).进一步地,Aut_nG/InnG≌K×L,其中K=Sp(2n,Z_(2~m))(当r0时)或者O(2n,Z_(2~m))(当r=0时),L=Z_(2~(r-1))×Z_2(当m=1,s=0,r≥1时)或者Z_(2~(r-s)).  相似文献   

3.
Let be a {0, 1}-homomorphism of a finite distributive lattice D into the congruence lattice Con L of a rectangular (whence finite, planar, and semimodular) lattice L. We prove that L is a filter of an appropriate rectangular lattice K such that ConK is isomorphic with D and is represented by the restriction map from Con K to Con L. The particular case where is an embedding was proved by E.T. Schmidt. Our result implies that each {0, 1}-lattice homomorphism between two finite distributive lattices can be represented by the restriction of congruences of an appropriate rectangular lattice to a rectangular filter.  相似文献   

4.
We study representations of distributive -lattices, considered as join-semilattices, by semilattices of finitely generated two-sided ideals of locally matricial algebras over a field k, aiming to find a functorial solution of the problem. We find simple examples of a finite subcategory of the category Ld of distributive -lattices and of a subcategory of Ld corresponding to a partially ordered class which cannot be lifted with respect to the Idc functor. On the other hand, we prove that there is such a lifting of every diagram in Ld or of a subcategory Ld1 of Ld whose objects are all distributive -lattices and whose morphisms are -embeddings. This paper is dedicated to Walter Taylor. Received February 8, 2005; accepted in final form August 11, 2005. The work is a part of the research project MSM 0021620839 financed by MSMT and partly supported by INTAS project 03-51-4110, the grant GAUK 448/2004/B-MAT, and the post-doctoral grant GAČR 201/03/P140.  相似文献   

5.
Roy Meshulam 《Order》2008,25(2):153-155
Let L be a finite lattice and let . It is shown that if the order complex satisfies then |L| ≥ 2 k . Equality |L| = 2 k holds iff L is isomorphic to the Boolean lattice {0,1} k . Research supported by the Israel Science Foundation.  相似文献   

6.
It is proved that for any ultrametric space (X, d), the set L(X) of its closed balls is a lattice . It is complete, atomic, tree-like, and real graduated. For any such lattice , the set A(L) of its atoms can be naturally equipped with an ultrametric . These assignments are inverse of one another: where the first equality means an isometry while the second one is a lattice isomorphism. A similar correspondence established for morphisms, shows that there is an isomorphism of categories. The category ULTRAMETR of ultrametric spaces and non-expanding maps is isomorphic to the category LAT* of complete, atomic, tree-like, real graduated lattices and isotonic, semi-continuous, non-extensive maps. We describe properties of the isomorphism functor and its relations to the categorical operations and action of other functors. Basic properties of a space (such as completeness, spherical completeness, total boundedness, compactness, etc.) are translated into algebraic properties of the corresponding lattice L(X).  相似文献   

7.
Let \(\Delta _0\) be the Laplace–Beltrami operator on the unit sphere \(\mathbb {S}^{d-1}\) of \({\mathbb R}^d\) . We show that the Hardy–Rellich inequality of the form $$\begin{aligned} \mathop \int \limits _{\mathbb {S}^{d-1}} \left| f (x)\right| ^2 \mathrm{d}{\sigma }(x) \le c_d \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) \left| (-\Delta _0)^{\frac{1}{2}}f(x) \right| ^2 \mathrm{d}{\sigma }(x) \end{aligned}$$ holds for \(d =2\) and \(d \ge 4\) but does not hold for \(d=3\) with any finite constant, and the optimal constant for the inequality is \(c_d = 8/(d-3)^2\) for \(d =2, 4, 5,\) and, under additional restrictions on the function space, for \(d\ge 6\) . This inequality yields an uncertainty principle of the form $$\begin{aligned} \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) |f(x)|^2 \mathrm{d}{\sigma }(x) \mathop \int \limits _{\mathbb {S}^{d-1}}\left| \nabla _0 f(x)\right| ^2 \mathrm{d}{\sigma }(x) \ge c'_d \end{aligned}$$ on the sphere for functions with zero mean and unit norm, which can be used to establish another uncertainty principle without zero mean assumption, both of which appear to be new.  相似文献   

8.
Let $r$ be a prime and $G$ be a finite group, and let $R, \,S$ be Sylow $r$ -subgroups of $G$ and $\text{ PGL }(2, r)$ respectively. We prove the following results: (1) If $|G|=|\text{ PGL }(2, r)|$ and $|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)} (S)|$ and $r$ is not a Mersenne prime, then $G$ is isomorphic to $\text{ PSL } (2, r) \times C_{2}, \,\text{ SL }(2, r)$ or $\text{ PGL }(2, r)$ . (2) If $|G|=|\text{ PGL }(2, r)|, \,|N_{G}(R)|=|N_{\mathrm{PGL}(2, r)}(S)|$ where $r>3$ is a Mersenne prime and $r$ is an isolated vertex of the prime graph of $G$ , then $G\cong \text{ PGL }(2, r)$ .  相似文献   

9.
Let B(H) denote the algebra of operators on a complex separable Hilbert space H, and let A $\in$ B(H) have the polar decomposition A = U|A|. The Aluthge transform is defined to be the operator . We say that A $\in$ B(H) is p-hyponormal, . Let . Given p-hyponormal , such that AB is compact, this note considers the relationship between denotes an enumeration in decreasing order repeated according to multiplicity of the eigenvalues of the compact operator T (respectively, singular values of the compact operator T). It is proved that is bounded above by and below by for all j = 1, 2, . . . and that if also is normal, then there exists a unitary U1 such that for all j = 1, 2, . . ..  相似文献   

10.
In this paper we deal with the existence of weak solutions for the following Neumann problem¶¶$ \left\{{ll} -\mathrm{div}(|\nabla u|^{p-2}\nabla u) + \lambda(x)|u|^{p-2}u = \alpha(x)f(u) + \beta(x)g(u) $ \left\{\begin{array}{ll} -\mathrm{div}(|\nabla u|^{p-2}\nabla u) + \lambda(x)|u|^{p-2}u = \alpha(x)f(u) + \beta(x)g(u) &; $ \mbox{in $ \mbox{in \Omega$}\\ {\partial u \over \partial \nu} = 0 $}\\ {\partial u \over \partial \nu} = 0 &; $ \mbox{on $ \mbox{on \partial \Omega$} \right. $}\end{array} \right. ¶¶ where $ \nu $ \nu is the outward unit normal to the boundary $ \partial\Omega $ \partial\Omega of the bounded open set _boxclose^N \Omega \subset \mathbb{R}^N . The existence of solutions, for the above problem, is proved by applying a critical point theorem recently obtained by B. Ricceri as a consequence of a more general variational principle.  相似文献   

11.
Let ω,ω 0 be appropriate weight functions and q∈[1,∞]. We introduce the wave-front set, WFFLq(w)(f)\mathrm{WF}_{\mathcal{F}L^{q}_{(\omega)}}(f) of f ? S¢f\in \mathcal{S}' with respect to weighted Fourier Lebesgue space FLq(w)\mathcal{F}L^{q}_{(\omega )}. We prove that usual mapping properties for pseudo-differential operators Op (a) with symbols a in S(w0)r,0S^{(\omega _{0})}_{\rho ,0} hold for such wave-front sets. Especially we prove that
$[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).$\begin{array}[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).\end{array}  相似文献   

12.
Summary G. Grätzer and H. Lakser proved in 1986 that for the finite distributive lattices D and E, with |D| > 1, and for the {0, 1}-homomorphism φ of D into E, there exists a finite lattice L and an ideal I of L such that D ≡ Con L, E ≡ Con I, and φ is represented by the restriction map. In their recent survey of finite congruence lattices, G. Grätzer and E. T. Schmidt ask whether this result can be improved by requiring that L be sectionally complemented. In this note, we provide an affirmative answer. The key to the solution is to generalize the 1960 sectional complement (see Part I) from finite orders to finite preorders.  相似文献   

13.
For a convex planar domain D \cal {D} , with smooth boundary of finite nonzero curvature, we consider the number of lattice points in the linearly dilated domain t D t \cal {D} . In particular the lattice point discrepancy PD(t) P_{\cal {D}}(t) (number of lattice points minus area), is investigated in mean-square over short intervals. We establish an asymptotic formula for¶¶ òT - LT + L(PD(t))2dt \int\limits_{T - \Lambda}^{T + \Lambda}(P_{\cal {D}}(t))^2\textrm{d}t ,¶¶ for any L = L(T) \Lambda = \Lambda(T) growing faster than logT.  相似文献   

14.
Let G be a graph with vertex set V(G) and edge set E(G). A labeling f : V(G) →Z2 induces an edge labeling f*: E(G) → Z2 defined by f*(xy) = f(x) + f(y), for each edge xy ∈ E(G). For i ∈ Z2, let vf(i) = |{v ∈ V(G) : f(v) = i}| and ef(i) = |{e ∈ E(G) : f*(e) =i}|. A labeling f of a graph G is said to be friendly if |vf(0)- vf(1)| ≤ 1. The friendly index set of the graph G, denoted FI(G), is defined as {|ef(0)- ef(1)|: the vertex labeling f is friendly}. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates CS(n, m).  相似文献   

15.
A non-empty set X of vertices of an acyclic digraph is called connected if the underlying undirected graph induced by X is connected and it is called convex if no two vertices of X are connected by a directed path in which some vertices are not in X. The set of convex sets (connected convex sets) of an acyclic digraph D is denoted by and its size by co(D) (cc(D)). Gutin et al. (2008) conjectured that the sum of the sizes of all convex sets (connected convex sets) in D equals Θ(n · co(D)) (Θ(n · cc(D))) where n is the order of D. In this paper we exhibit a family of connected acyclic digraphs with and . We also show that the number of connected convex sets of order k in any connected acyclic digraph of order n is at least n − k + 1. This is a strengthening of a theorem of Gutin and Yeo.  相似文献   

16.
In this paper we study perturbed Ornstein–Uhlenbeck operators
$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$
for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by
$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$
One key assumption is a new \(L^p\)-dissipativity condition
$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$
for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.
  相似文献   

17.
设A是秩为n(n≥2)的自由Abel群,A的自同构群Aut(A)= GL(n,Z).对整数m,取 α =(0 1 0…0 0 0(………)(…………)0 0 0…0 1 1 0…0 m)∈ Aut(A).记Γm(n)=A(×)〈α〉,则它是一个2元生成的多重循环群.本文给出了 Γm(n)的准确的剩余有限性质.  相似文献   

18.
We consider the critical nonlinear Schrödinger equation $iu_{t} = -\Delta u-|u|^{4/N}$ with initial condition u(0, x) = u0.For u0$\in$H1, local existence in time of solutions on an interval [0, T) is known, and there exist finite time blow-up solutions, that is u0 such that $\textrm{lim} _{t\uparrow T <+\infty}|\nabla u(t)|_{L^{2}}=+\infty$. This is the smallest power in the nonlinearity for which blow-up occurs, and is critical in this sense.The question we address is to control the blow-up rate from above for small (in a certain sense) blow-up solutions with negative energy. In a previous paper [MeR], we established some blow-up properties of (NLS) in the energy space which implied a control $|\nabla u(t)|_{L^{2}} \leq C \frac{|\ln(T-t)|^{N/4}}{\sqrt{T-t}}$ and removed the rate of the known explicit blow-up solutions which is $\frac{C}{T-t}$.In this paper, we prove the sharp upper bound expected from numerics as$|\nabla u(t)|_{L^{2}} \leq C \left(\frac{\ln|\ln(T-t)|}{T-t} \right)^{1/2}$by exhibiting the exact geometrical structure of dispersion for the problem.  相似文献   

19.
G. Grätzer  E. T. Schmidt 《Order》1994,11(3):211-220
Thefunction lattice L P is the lattice of all isotone maps from a posetP into a latticeL.D. Duffus, B. Jónsson, and I. Rival proved in 1978 that for afinite poset P, the congruence lattice ofL P is a direct power of the congruence lattice ofL; the exponent is |P|.This result fails for infiniteP. However, utilizing a generalization of theL P construction, theL[D] construction (the extension ofL byD, whereD is a bounded distributive lattice), the second author proved in 1979 that ConL[D] is isomorphic to (ConL) [ConD] for afinite lattice L.In this paper we prove that the isomorphism ConL[D](ConL)[ConD] holds for a latticeL and a bounded distributive latticeD iff either ConL orD is finite.The research of the first author was supported by the NSERC of Canada.The research of the second author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. 1903.  相似文献   

20.
In 1970, J.B. Kelly proved that $$\begin{array}{ll}0 \leq \sum\limits_{k=1}^n (-1)^{k+1} (n-k+1)|\sin(kx)| \quad{(n \in \mathbf{N}; \, x \in \mathbf{R})}.\end{array}$$ We generalize and complement this inequality. Moreover, we present sharp upper and lower bounds for the related sums $$\begin{array}{ll} & \sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1) | \cos(kx) | \quad {\rm and}\\ & \quad{\sum\limits_{k=1}^{n} (-1)^{k+1}(n-k+1)\bigl( | \sin(kx) | + | \cos(kx)| \bigr)}.\end{array}$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号