首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The mechanism of ultrafine (<100 nm) SiO2 particle production under thermal arc plasma conditions is studied by modelling. Two cases of the process are considered in the model: (i) when it is determined as a pure free-molecular coagulation; (ii) when the coagulation is influenced by the interparticle forces. The Hamaker formula is used to present the van der Waals forces between the particles. Particle size distribution functions (PSDF) are calculated for both cases. It is shown that inclusion of the interparticle interactions does not affect the self-preservation of the PSDF. The mean particle sizes are obtained from the PSDF and compared. Higher values are observed in the case that includes van der Waals forces. Comparison between experimental and calculated PSDF shows better agreement in the case considering interparticle forces.  相似文献   

2.
对微米、近亚微米尺度的细颗粒间相互作用过程的显微观察发现,细颗粒间具有"吸引-旋绕-排斥"的相互作用行为.受力分析表明,包含范德华力、静电库仑力和电像力的传统颗粒间作用力模型不能解释这种相互作用行为.根据细颗粒的荷电特性,提出细颗粒间还具有诱导偶极子作用力.通过引入偶极子作用力改进了细颗粒间作用力模型,利用新的模型对细颗粒间相互作用进行了模拟,得到了和实验相同的相互作用行为,并且对影响细颗粒相互作用的参数进行了分析.提出投入大颗粒和增加外静电场等都是促进颗粒凝并的有效措施.  相似文献   

3.
冯宇  林建忠 《中国物理 B》2008,17(12):4547-4553
The collision efficiency in the Brownian coagulation is investigated. A new mechanical model of collision between two identical spherical particles is proposed, and a set of corresponding collision equations is established. The equations are solved numerically, thereby obtaining the collision efficiency for the monodisperse dioctyl phthalate spherical aerosols with diameters ranging from 100 to 760 nm in the presence of van der Waals force and the elastic deformation force. The calculated collision efficiency, in agreement with the experimental data qualitatively, decreases with the increase of particle diameter except a small peak appearing in the particles with a diameter of 510 nm. The results show that the interparticle elastic deformation force cannot be neglected in the computation of particle Brownian coagulation. Finally, a set of new expressions relating collision efficiency to particle diameter is established.  相似文献   

4.
采用微观可视化的高速摄像技术直接观察了燃烧源亚微米颗粒物间的相互作用形态,发现了亚微米颗粒间存在“吸引-旋绕-排斥”形态的相互作用。通过颗粒受力分析,认为传统所考虑的曳力、重力、库仑力、范德华力不能解释这种相互作用.根据亚微米颗粒荷电的不均匀性特征提出颗粒静电力应包括净电荷库仑力和感应偶极子间作用力两部分.感应偶极子间作用力是近程力,具有径向和周向两个方向,在颗粒比较接近的时候迅速增大,并能导致颗粒之间相互旋绕和排斥。该力与上述几种力综合起来可以很好地解释实验发现的这种颗粒相互作用形态。  相似文献   

5.
We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.  相似文献   

6.
The Coulomb, van der Waals and repulsive lattice sums occurring in the higher order elastic constants up to sixth order have been calculated for the rocksalt and cesium chloride structures. Numerical values of the static elastic constants up to sixth order based on a rigid ion model with van der Waals and Born-Mayer type central force interaction between first and second nearest neighbors are calculated for several alkali halides representing both structure types. Fair agreement with the available experimental third and fourth order elastic constant data is found.  相似文献   

7.
The size distribution of the nanoparticles formed in premixed ethylene–air flames and collected thermophoretically on mica cleaved substrates is obtained by atomic force microscopy (AFM). The distribution function extends from 1 to about 5 nm in non-sooting flames and in the soot pre-inception region of the richer flames, while it becomes bimodal and larger particles are formed in the soot inception region of the slightly sooting flames. The distribution is compared with the size distribution of nano-sized organic carbon (NOC) and soot particles, obtained by “in situ” multi-wavelength extinction and light scattering methods. The deposition efficiency is estimated from the differences between these two size distribution functions as a function of the equivalent diameter of the nanoparticles. Furthermore, the coagulation coefficient of particles in flame is obtained from the temporal evolution of the number concentration of the nanoparticles inside the flames. NOC particles, which are rapidly produced in locally rich combustion regions, have peculiar properties since their sticking coefficient both for coagulation and adhesion result to be orders of magnitudes lower than that expected by larger aerosols, like soot particles. The experimental results are interpreted by modelling the van der Waals interactions of the nanoparticles in terms of Lennard-Jones potentials and in the framework of the gas kinetic theory. The estimated adhesion and coagulation efficiencies are in good agreement with those calculated from AFM and optical data. The very low efficiency values observed for the smaller particles could be ascribed to the high energy of these particles due to their Brownian motion, which causes thermal rebound effects prevailing over adhesion mechanisms due to van der Waals forces.  相似文献   

8.
Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the new van der Waals three-body force shell model (VTSM), which incorporates the effects of the van der Waals interaction along with long-range Coulomb interactions, three-body interactions and short-range second neighbour interactions in the framework of rigid shell model (RSM). Phonon dispersion curves (PDC), variations of Debye temperature with absolute temperature and phonon density of state (PDS) curves have been reported for thallous halides using VTSM. Comparison of experimental values with those of VTSM and TSM are also reported in the paper and a good agreement between experimental and VTSM values has been found, from which it may be inferred that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of thallous halides.  相似文献   

9.
Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials.  相似文献   

10.
采用考虑颗粒脉动流动对气相湍流流动影响的大涡模拟(LES)研究气相湍流,采用直接模拟蒙特卡罗方法(DSMC)模拟颗粒间的碰撞。单颗粒运动满足牛顿第二定律,颗粒相和气相相间作用的双向耦合由牛顿第三定律确定,考虑超细颗粒间的van der Waals作用力。数值模拟垂直管内超细颗粒气固两相流动,对颗粒相速度、浓度以及团聚物流动过程进行分析。  相似文献   

11.
It is demonstrated that excited van der Waals systems can relax by electron emission via a novel interatomic mechanism. The process is analyzed by means of extensive ab initio calculations of potential energy surfaces and electronic decay rates. The electronic emission, taking place on the same time scale as the motion of the atomic nuclei, is accompanied by interesting dynamical effects amenable to experimental observations. These effects arise as a consequence of the weak chemical bond in van der Waals clusters and the Coulomb repulsion pattern originating from electron emission.  相似文献   

12.
The stability of agglomerates is not only an important material parameter of powders but also of interest for estimating the particle size upon accidental release into the atmosphere. This is especially important when the size of primary particles is well below the agglomerate size, which is usually the case when the size of primary particles is below 100 nm. During production or airborne transportation in pipes, high particle concentrations lead to particle coagulation and the formation of agglomerates in a size range of up to some micrometers. Binding between the primary particles in the agglomerates is usually due to van der Waals forces. In the case of a leak in a pressurized vessel (e.g. reactor, transport pipe, etc.), these agglomerates can be emitted and shear forces within the leak can cause agglomerates to breakup. In order to simulate such shear forces and study their effect on agglomerate stability within the airborne state, a method was developed where agglomerate powders can be aerosolized and passed through an orifice under various differential pressure conditions. First results show that a higher differential pressure across the orifice causes a stronger fragmentation of the agglomerates, which furthermore seems to be material dependent.  相似文献   

13.
We give a survey on the predictions of Coulombic phase transitions in dense plasmas (PPT) and derive several new results on the properties of these transitions. In particular we discuss several types of the critical point and the spinodal curves of quantum Coulombic systems. We construct a simple theoretical model which shows (in dependence on the parameter values) either one alkali-type transition (Coulombic and van der Waals forces determine the critical point) or one Coulombic transition and another van der Waals transition. We investigate the conditions to find separate Van der Waals and Coulomb transitions in one system (typical for hydrogen and noble gas-type plasmas). The separated Coulombic transitions which are strongly influenced by quantum effects are the hypothetical PPT, they are in full analogy to the known Coulombic transitions in classical ionic systems. Finally we give a discussion of several numerical and experimental results referring to the PPT in high pressure plasmas.  相似文献   

14.
A sequential Brownian dynamics approach was used to establish the morphological evolution of a nanostructured particle deposit accounting for random diffusion, particle–particle and particle–surface interactions through van der Waals forces, and sintering of deposited particles. Monodisperse (30nm radius) titanium dioxide particles were used in the simulations. A linear sintering law rate expression was used to account for the decrease in total surface area of the deposit. Characteristics such as packing thickness, total surface area, and fractal dimension are reported as a function of time during the deposition process. Sintering resulted in higher fractal dimensions (as defined) for the deposits, and elevated temperatures resulted in more compact deposits.  相似文献   

15.
The deformation and breakup processes of a particle-cluster aggregate under shear flows are investigated by the two-phase lattice Boltzmann method. In the simulation the particle is modeled by a hard droplet with large viscosity and strong surface tension. The van der Waals attraction force is taken into account for the interaction between the particles. Also, the Brownian motion is considered for nano-particles. Two important dimensionless parameters are introduced in order to classify calculated results. One is the ratio of fluid force to the maximum inter-particle force, Y, and the other is the Péclet number which is the ratio of the rate of diffusion by a shear flow to the rate of diffusion by Brownian motion. It is found that Y is the key factor in dispersion and that the Brownian motion retards the dispersion.  相似文献   

16.
The effect of Coulomb interaction between Dirac fermions on the formation of the Kohn-Luttinger superconducting state in bilayer doped graphene is studied disregarding of the effect of the van der Waals potential of the substrate and impurities. The phase diagram determining the boundaries of superconductive domains with different types of symmetry of the order parameter is built using the extended Hubbard model in the Born weak-coupling approximation with allowance for the intratomic, interatomic, and interlayer Coulomb interactions between electrons. It is shown that the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction inclusively and an account for the long-range intraplane Coulomb interactions significantly affect the competition between the superconducting phases with the f-, p + ip-, and d + id-wave symmetries of the order parameter. It is demonstrated that the account for the interlayer Coulomb interaction enhances the critical temperature of the transition to the superconducting phase.  相似文献   

17.
We present a design for a spin-exchange optical pumping system to produce large quantities of highly polarized 129Xe. Low xenon concentrations in the flowing gas mixture allow the laser to maintain high Rb polarization. The large spin-exchange rate between Rb and 129Xe through the long-lived van der Waals molecules at low pressure, combined with a high flow rate, results in large production rates of hyperpolarized xenon. We report a maximum polarization of 64% achieved for a 0.3 l/h Xe flow rate, and maximum magnetization output of 6 l/h at 22% polarization. Our findings regarding the polarization dependence on temperature, nitrogen partial pressure, and gas mixture flow velocity are also reported.  相似文献   

18.
Derivations of the van der Waals equation typically use standard recipes involving ensemble averages of statistical mechanics. In this work, we study a box of weakly interacting gas particles in one-dimension by explicitly incorporating the mechanical point of view. This has the merit that it not only reproduces the van der Waals equation but also tells us some extra interesting physics not immediately clear from a pure statistical mechanical approach. For example, we show that the traditional handwaving argument leading to van der Waals equation requires closer scrutiny if it is to get things right.  相似文献   

19.
采用简单粗粒化粒子模型,通过郎之万动力学模拟研究了具有范德华作用和静电作用的二元粒子自组装.研究发现,通过改变粒子尺寸和粒子间作用强度,二元粒子能够自发形成各种聚集结构,如球 形、堆叠层状与管状结构.利用两亲性分子或两嵌段聚合物自组装理论,解释了二元粒子聚集结构的形成规律.当向溶液中加入反电荷离子时,模拟表明粒子聚集结构在相图中的分布出现了明显偏移.  相似文献   

20.
Ubiquitous van der Waals interactions between atoms and molecules are important for many molecular and solid structures. These systems are often studied from first principles using the density functional theory (DFT). However, the commonly used DFT functionals fail to capture the essence of van der Waals effects. Most attempts to correct for this problem have a basic semiempirical character, although computationally more expensive first principles schemes have been recently developed. We here describe a novel approach, based on the use of the maximally localized Wannier functions, that appears to be promising, being simple, efficient, accurate, and transferable (charge polarization effects are naturally included). The results of test applications to small molecules and bulk graphite are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号