首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用聚苯乙烯纳米粒子有序组装结构为模板,进行了金纳米粒子的图案化组装。金纳米粒子在聚苯乙烯纳米粒子底部自组装聚集,形成规则的“面包圈”结构。表面增强拉曼光谱表明,相对于随机分布的金纳米粒子而言,金纳米粒子组装结构具有聚焦电磁场作用,从而使吸附的对巯基苯甲酸的拉曼散射得以进一步增强。  相似文献   

2.
在自组装结构形成过程中,热涨落会导致出现多种无定形结构及转化路径. 这些无定型结构对应着不同的粒子聚集程度,但是目前缺乏描述它们的定量方法. 为了实现对自组装结构的精确控制,其中重要的一步是定量描述和分析在自组装结构形成过程中出现的不同聚集结构. 本文提出了一种直接计算以及定量对比不同聚集结构的方法,进一步给出了几个案例研究用来评估聚集结构如何受外界控制因素(如相互作用范围、强度、以及吸引作用的各向异性)的影响.  相似文献   

3.
在自组装结构形成过程中,热涨落会导致出现多种无定形结构及转化路径.这些无定型结构对应着不同的粒子聚集程度,但是目前缺乏描述它们的定量方法.为了实现对自组装结构的精确控制,其中重要的一步是定量描述和分析在自组装结构形成过程中出现的不同聚集结构.本文提出了一种直接计算以及定量对比不同聚集结构的方法,进一步给出了几个案例研究用来评估聚集结构如何受外界控制因素(如相互作用范围、强度、以及吸引作用的各向异性)的影响.  相似文献   

4.
纳米粒子的自组装和有序组装膜的结构与性质近年来受到了人们的广泛关注,纳米粒子的表面结构与性质对由其组装成的有序膜的结构与性质有直接的影响。文章报道了利用自组装技术制备的银纳米粒子与双亲有机分子的单层和多层复合LB膜,通过吸收光谱和表面增强拉曼光谱研究了银纳米粒子与吸附分子间的相互作用,探讨了复合膜的成膜特性及银纳米粒子的拉曼增强特性。十八胺/银粒子复合LB膜的吸收光谱及拉曼光谱显示,十八胺分子与银纳米粒子表面的活位通过NH2中的氮原子以复合体的形式结合;同时,在激发光的作用下复合体可能存在光催化过程。根据银粒子复合LB膜的实验结果,十八胺和十八酸之间的反应产物在复合膜中起空间位阻作用,与银粒子表面的相互作用较弱。  相似文献   

5.
在水热环境下合成出\掺杂电荷诱导自组装纳米纤维阵列结构的聚苯胺平板,并通过一系列设计实验研究了这种自组装微观结构的形成机理,例如在反应溶液中引入不参与反应、对电荷组装起干扰作用的电解质,以及用计算模拟体系静电能与纳米纤维阵列夹角的相互关系等实验.实验结果发现,由掺杂离子引起的静电相互作用在形成聚苯胺自组装结构的过程中起了重要的作用.  相似文献   

6.
利用纳米粒子组装制备了金基底———巯基苯胺自组装膜偶联层———金纳米粒子的“三明治”结构,研究了表面粒子密度与偶连层分子的拉曼光谱强度的关系。实验结果显示,该结构对偶连层分子的拉曼光谱有很好的增强效应,增强因子可达105。在表面粒子密度较低时,拉曼光谱强度与表面粒子密度曲线呈线形,随着表面粒子密度的增加,曲线出现负偏差并在粒子密度较高区域出现一个平台。  相似文献   

7.
基于分形理论,用计算机模拟了由球形基本粒子构成的煤烟聚集粒子。利用离散偶极子近似方法(Discrete Dipole Approximation)研究了煤烟聚集粒子的散射特性,讨论了分形煤烟聚集粒子的散射强度随煤烟聚集粒子的分形结构、大小、相对折射率及入射波波长变化情况。  相似文献   

8.
以DLA模型为基础,模拟研究了粒子运动区域和粒子源距离的大小对非对称性聚集生长产生的影响。发现粒子随机运动区域和粒子源距离的大小对局部区域聚集生长产生重大的影响。  相似文献   

9.
朱梓华  朱涛 《光散射学报》1999,11(3):248-251
利用纳米粒子组装制备了金基底--巯基苯胺自组装膜偶联层--金纳米粒子的“三明治”结构,研究了表面粒子粒子密度与偶连层分子的拉曼光谱强度的关系。结果 偶连层分子的拉曼光谱有很好的增强效应,增强因子可达10^5。在表面粒子密度较低时,拉曼光谱强讧民表面粒子密度曲线呈线形,随着表面粒子密度的增加,曲线出现偏差并在粒子密度较高区域出现一个平台。  相似文献   

10.
探索自驱粒子形状对自组装结构和动力学的影响是软物质研究的前沿课题.组装基元形成的寡聚体及其动力学是大量粒子形成组装结构的基础.本文设计了一种“十”字形自驱粒子,发现其可以形成数种不同构型的寡聚体,计算了寡聚体(二、三、四聚体)的均方位移、角速度、角速度分布概率、轨迹曲率分布概率等.寡聚体的运动行为可分为两类:一类是合力为零但力矩不为零,寡聚体进行小半径的偏心旋转;另一类是合力不为零力矩也不为零,寡聚体呈现大半径的偏心旋转.寡聚体的平动动力学在短时间尺度(大致约为1—2 s,与其角速度有关)都呈现超扩散现象,但转动速度受寡聚体结构影响;力矩越大,转动惯量越小,角速度越大.对于三聚体,轨迹曲率与角速度有关,角速度越大,曲率也越大.  相似文献   

11.
The validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions has been investigated by conducting DPD simulations for a two–dimensional system. First, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, attention has been focused on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of mass and diameter of dissipative particles and model parameters, which are included in defining the equation of motion of dissipative particles. Next, a multi–particle system of magnetic particles has been treated, and particle aggregates have been evaluated, together with the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle–particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.  相似文献   

12.
We have proposed a new repulsive layer model for describing the interaction between steric layers of coated cubic particles. This approach is an effective technique applicable to particle-based simulations such as a Brownian dynamics simulation of a suspension composed of cubic particles. 3D Brownian dynamics simulations employing this repulsive interaction model have been performed in order to investigate the equilibrium aggregate structures of a suspension composed of cubic haematite particles. It has been verified that Brownian dynamics employing the present steric interaction model are in good agreement with Monte Carlo results with respect to particle aggregate structures and particle orientational characteristics. From the viewpoint of developing a surface modification technology, we have also investigated a regime change in the aggregate structure of cubic particle in a quasi-2D system by means of Brownian dynamics simulations. If the magnetic particle–particle interaction strength is relatively strong, in zero applied magnetic field the particles aggregate in an offset face-to-face configuration. As the magnetic field strength is increased, the offset face-to-face structure is transformed into a more direct face-to-face contact configuration that extends throughout the whole simulation region.  相似文献   

13.
In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We developed a simulation tool that combines micromagnetics and discrete particle dynamics, in order to design micropost arrays made of interacting beads. The simulation takes into account the viscous drag of the blood flow, magnetostatic interactions between the magnetic beads and gradient forces from external aligned magnets. We developed a particle-particle particle-mesh method for effective computation of the magnetic force and torque acting on the particles.  相似文献   

14.
Using laser tweezers, we study colloidal interactions of solid microspheres in the nematic bulk caused by elastic distortions around the particles with tangential surface anchoring. The interactions overcome the Brownian motion when the interparticle separation r-->p is less than 3 particle diameters. The particles attract when the angle theta between r-->p and the uniform far-field director n0 is between 0 degrees and approximately 70 degrees and repel when 75 degrees 相似文献   

15.
利用蒙特卡罗方法和原始模型对正则系综中的带电胶体悬浮液进行分子模拟研究. 同时利用众所周知的DLVO理论研究颗粒之间的有效相互作用. 另外研究了温度、微离子价态和胶体粒子对溶液相稳定性的影响. 结果表明,在较高的温度下悬浮液更稳定. 另一方面,低价态的微离子更有利于形成稳定的悬浮液. 对于高电荷的微离子,平均每个集合体中的聚集体的数量和颗粒数更高,较大的胶体粒子稳定性差. 理论结果与表面曲率影响的理论公式有很好的一致性.  相似文献   

16.
17.
H. M. Yin 《哲学杂志》2013,93(28):4367-4395
Coupled magnetoelastic behaviour is investigated for two-phase composites containing randomly dispersed ferromagnetic particles under both magnetic and mechanical loading. The pair-wise particle interactions for magnetic field and elastic field are first defined by the solution for two particles embedded in the infinite domain, which is explicitly solved by the Green's function technique. By integrating the interactions from all other particles in the representative volume element, the homogenized magnetic and elastic fields are then obtained. Effective magnetostriction due to the magnetic interaction force is further derived. Without consideration of magnetic loading, this micromechanical model provides an effective elasticity with the pair-wise particle interactions. By dropping the interaction term, this model is reduced into Mori–Tanaka's model. Finally, magnetoelasticity is numerically solved by considering the magnetomechanical coupling effect. It is predicted that the effective Young's modulus and shear modulus decrease along with the increase of magnetic loading for random composites.  相似文献   

18.
Akira Satoh 《Molecular physics》2014,112(16):2122-2137
We have investigated aggregation phenomena in a suspension composed of rod-like haematite particles by means of Brownian dynamics simulations. The magnetic moment of the haematite particles lies normal to the particle axis direction and therefore the present Brownian dynamics method takes into account the spin rotational Brownian motion about the particle axis. We have investigated the influence of the magnetic particle–field and particle–particle interactions, the shear rate and the volumetric fraction of particles on the particle aggregation phenomena. Snapshots of aggregate structures are used for a qualitative discussion and the cluster size distribution, radial distribution function and the orientational correlation functions of the direction of particle axis and magnetic moment are the focus for a quantitative discussion. The significant formation of raft-like clusters is found to occur at a magnetic particle–particle interaction strength much larger than that required for a magnetic spherical particle suspension. This is because the rotational Brownian motion has a significant influence on the formation of clusters in a suspension of rod-like particles with a large aspect ratio. An applied magnetic field enhances the formation of raft-like clusters. A shear flow does not have a significant influence on the internal structure of the clusters, but influences the cluster size distribution of the raft-like clusters.  相似文献   

19.
The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free energy for immersing a single particle in the solution is calculated explicitly. Important features are qualitatively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experimental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall, and between two small spheres, quantitative results are presented. A systematic approach for studying effective many-body interactions is provided. The common Asakura-Oosawa approximation modeling the polymer coils as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.  相似文献   

20.
Biophysical chemistry of mesoscale systems and quantitative modeling in systems biology now require a simulation methodology unifying chemical reaction kinetics with essential collective physics. This will enable the study of the collective dynamics of complex chemical and structural systems in a spatially resolved manner with a combinatorially complex variety of different system constituents. In order to allow a direct link-up with experimental data (e.g. high-throughput fluorescence images) the simulations must be constructed locally, i.e. mesoscale phenomena have to emerge from local composition and interactions that can be extracted from experimental data. Under suitable conditions, the simulation of such local interactions must lead to processes such as vesicle budding, transport of membrane-bounded compartments and protein sorting, all of which result from a sophisticated interplay between chemical and mechanical processes and require the link-up of different length scales. In this work, we show that introducing multipolar interactions between particles in dissipative particle dynamics (DPD) leads to extended membrane structures emerging in a self-organized manner and exhibiting the necessary mechanical stability for transport, correct scaling behavior, and membrane fluidity so as to provide a two-dimensional self-organizing dynamic reaction environment for kinetic studies in the context of cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号