首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

2.
研究了炭黑(CB)填充聚苯乙烯(PS)熔体的稳态和动态流变行为. CB/PS复合体系在CB体积分数φ=0.06时发生逾渗转变. 结果表明, 低应变区熔体模量降低主要归因于粒子-粒子及粒子-高分子间作用力的破坏, 高应变下模量的急剧下降则主要与高分子链间解缠结有关. 采用“两相”模型拟合线性动态流变行为, 发现应变放大因子Af(φ)、填充相模量及松弛指数与温度有关. Af(φ)~φ关系符合Guth方程和扩散控制的粒子簇聚集模型. “粒子相”形状参数与聚集体分维度均随温度升高而有所降低, 说明CB粒子聚集体因团聚而趋于各向同性, 应变放大效应减弱. “粒子相”特征模量G'f1(φ)和G"f0(φ)与φ关系满足标度律. 当φ > 0.06时, G'f1(φ)和G"f0(φ)及其标度指数均随温度升高而明显降低, 其G'f1(φ)变化幅度略大于G"f0(φ), 说明“粒子相”弹性与黏性组分具有不同的温度依赖性. 随着温度升高, 扩散控制的CB粒子团聚过程加快, 应变放大效应减弱.  相似文献   

3.
Synthetic biodegradable aliphatic polyester (BAP) intercalated into organoclay was prepared by melt compounding, and its solidlike characteristics were investigated via several rheological test modes: steady shear rotation, oscillation, and creep testing. Structural investigations with X‐ray diffraction and transmission electron spectroscopy were also performed for a better understanding of the characteristic rheological behaviors. The creep, recovery, and stress modulus exhibited a solidlike transition of BAP/clay nanocomposites that depended on the clay content. An increase in the zero shear rate viscosity and a shifting of the crossover point (storage modulus vs loss modulus) to a lower frequency were also observed with increasing clay contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2052–2061, 2003  相似文献   

4.
Dynamic Mechanical Analysis (DMA) systems are measurement devices for obtaining master curves and complex modules of viscoelastic materials, such as rubbers. The conventional DMAs measurement systems in market have several limitations, which restrict their ability for operating at high frequencies. Thus, Williams, Landel and Ferry (WLF) relation is used to produce master curves and predict the material properties at high frequencies. In conventional DMAs, experiments are done in a range of temperatures, and then a master curve is made for a chosen reference temperature by shifting the measurements data to high frequencies. Therefore, the obtained results, which are not based on direct measurements, can be inaccurate. In order to overcome this problem a new simple shear high-frequency DMA (HFDMA) system is designed and built to directly measure the dynamic mechanical properties of viscoelastic material at high frequencies and the strain levels sufficient for tire manufacturers. The new HFDMA can be used to test any viscoelastic materials which have glass transmission temperature (Tg) lower than room temperature (about 23 °C) such as the Styrene-butadiene rubber (SBR). The SBR is the base material for tire tread. The designing process of this new HFDMA is presented in this paper. The rubber specimen shape is chosen by taking into account the shear elastic wave effect, bending, buckling effect and heat generation in the specimen. The repeatability test is accomplished to ensure that the results obtained from the new HFDMA are repeatable and the repeatability uncertainty is about 0.04%. The new HFDMA is validated by comparing to the direct test results of conventional DMA at 100 Hz. The direct high frequency (5 kHz) complex shear modulus and damping factor are compared with the master curve of the conventional DMA developed by the use of WLF relation for SBR. This comparison revealed that the complex shear modulus and damping factor of the SBR obtained from the HFDMA at 5 kHz and 0.05% strain amplitude are about 7% and 6.5% higher than those obtained from the conventional DMA, respectively.  相似文献   

5.
Results of a complete study of the rheological properties of highly concentrated emulsions of the w/o type with the content of the dispersed phase up to 96% are reported. The aqueous phase is a supersaturated solution of nitrates, where the water content does not exceed 20%. Dispersed droplets are characterized by a polyhedral shape and a broad size distribution. Highly concentrated emulsions exhibit the properties of rheopectic media. In steady-state regimes of shearing, these emulsions behave as viscoplastic materials with a clearly expressed yield stress. Highly concentrated emulsions are characterized by elasticity due to the compressed state of droplets. Shear storage modulus is constant in a wide range of frequencies that reflect solid-like behavior of such emulsions at small deformations. The storage (dynamic) modulus coincides with the elastic modulus measured in terms of the reversible deformations after the cessation of creep. Normal stresses appear in the shearing. In the low shear rate domain, normal stresses do not depend on shear rate, so that it can be assumed that they have nothing in common with normal stresses arising owing to the Weissenberg effect. These normal stresses can be attributed to Reynolds’ dilatancy (elastic dilatancy). Normal stresses sharply decrease beyond some threshold value of the shear rate and slightly increase only in a high shear rate domain. Observed anomalous flow curves and unusual changes of normal stresses with shear rate are explained by the two-step model of emulsion flow. Direct optical observations show that emulsions move by the mechanism of the rolling of larger droplets over smaller ones without noticeable changes of their shape at low shear rates, while strong distortions of the droplet shape is evident at high shear rates. The transition from one mechanism to the other is attributed to a certain critical value of the capillary number. The concentration dependence of the elastic modulus (as well as the yield stress) can be described by the Princen-Kiss model, but this model fails to predict the droplet size dependence of the elastic modulus. Numerous experiments demonstrated that the modulus and yield stress are proportional to the squared reciprocal size, while the Princen-Kiss model predicts their linear dependence on the reciprocal size. A new model based on dimensional arguments is proposed. This model correctly describes the influence of the main structural parameters on the rheological properties of highly concentrated emulsions. The boundaries of the domain of highly concentrated emulsions are estimated on the basis of the measurement of their elasticity and yield stress.  相似文献   

6.
Thirty‐three polystyrene (PS)/acrylonitrile‐butadiene‐styrene (ABS) and high impact PS/ABS polymer blends with organoclay and copolymer additives were prepared by melt processing using different mixing sequences in order to test the putative capability of clay to perform a compatibilizing role in polymer blends. In general, the addition of clay increased the tensile modulus and had little effect on tensile strength. For the blends studied in this work, the addition of organoclays caused a catastrophic reduction in impact strength, a critical property for commercial viability. The polymer‐blend nanocomposites adopted a structure similar to that for ABS/clay nanocomposites as determined by X‐ray diffraction and transmission electron microscopy. It is suggested that clay reinforcement inhibits energy absorption by craze formation and shear yielding at high strain rates. Simultaneous mixing of the three components provided nanocomposites with superior elongation and energy to failure compared to sequential mixing. The clay pre‐treated with a benzyl‐containing surfactant gave the best overall properties among the various organoclays tested and of the two clay contents studied 4 wt % was preferred over 8 wt % addition. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
This paper presents an investigation on the enhancement of the barrier properties of paperboard and paper. Microfibrillar cellulose (MFC) and shellac were deposited on the fibre based substrates using a bar coater or a spray coating technique. The air, oxygen and water vapour permeability properties were measured to quantify the barrier effect of the applied coatings. In addition, the mechanical properties were determined and image analysis of the structure was performed to examine the coating adhesion. The air permeance of the paperboard and papers was substantially decreased with a multilayer coating of MFC and shellac. Furthermore, for the MFC and shellac coated papers, the oxygen transmission rate decreased several logarithmic units and the water vapour transmission rate reached values considered as high barrier in food packaging (6.5 g/m2 24 h). The analysis of mechanical and morphological properties indicated good adhesion between the coating and the base substrate.  相似文献   

8.
We have designed and studied a new experimental colloidal system to probe how the weak shape anisotropy of uniaxial particles and variable repulsive (Coulombic) and attractive (van der Waals) forces influence slow dynamics, shear elasticity, and kinetic vitrification in dense suspensions. The introduction of shape anisotropy dramatically delays kinetic vitrification and reduces the shear elastic modulus of colloidal diatomics relative to their chemically identical spherical analogs. Tuning the interparticle interaction from repulsive, to nearly hard, to attractive by increasing suspension ionic strength reveals a nonmonotonic re-entrant dynamical phase behavior (glass-fluid-gel) and a rich variation of the shear modulus. The experimental results are quantitatively confronted with recent predictions of ideal mode coupling and activated barrier hopping theories of kinetic arrest and elasticity, and good agreement is generally found with a couple of exceptions. The systems created may have interesting materials science applications such as flowable ultrahigh volume fraction suspensions, or responsive fluids that can be reversibly switched between a flowing liquid and a solid nonequilibrium state based on in situ modification of suspension ionic strength.  相似文献   

9.
铝/镁混合金属氢氧化物正电胶体粒子体系的触变性   总被引:9,自引:1,他引:8  
采用恒定低剪切速率方法和动态实验方法研究了铝/镁混合金属氢氧化物(MMH)悬浮体的流变性,着重考察了剪切历史和恢复时间等因素对悬浮体触变性的影响,发现MMH粒子深度的增加使得悬浮体从粘性流体变为“类固体”;恒定低剪切速率方法和动态实验方法研究悬浮体的结构恢复过程给出了不同的结果,唯象地解释了MMH悬浮体触变性产生的原因,认为触变性结构是由于粒子间的静电排斥作用而形成的,与粘土悬浮体相比,两者的流变性具有诸多相似之处,只是所带电荷符号相反。  相似文献   

10.
A nonlinear Langevin equation (NLE) theory for the translational center-of-mass dynamics of hard nonspherical objects has been applied to isotropic fluids of rigid rods. The ideal kinetic glass transition volume fraction is predicted to be a monotonically decreasing function beyond an aspect ratio of two. The functional form of the decrease is weaker than the inverse aspect ratio. Vitrification occurs at lower volume fractions for corrugated tangent bead rods compared to their smooth spherocylinder analogs. The ideal glass transition signals a crossover to activated dynamics, which is estimated to be observable before the nematic phase boundary is encountered if the aspect ratio is less than roughly 25. Calculations of the glassy elastic shear modulus and absolute yield stress reveal a roughly exponential growth with volume fraction. The dependence of entropic barriers and mean barrier hopping times on concentration for rods of variable aspect ratios can be collapsed quite well based on a difference volume fraction variable that quantifies the distance from the ideal glass boundary. Full numerical solution of the NLE theory via stochastic trajectory simulation was performed for tangent bead rods, and the results were compared to their hard sphere analogs. With increasing shape anisotropy the characteristic length scales of the nonequilibrium free energy increase and the magnitude of the localization well and entropic barrier curvatures decreases. These changes result in a significant aspect ratio dependence of dynamical properties and time correlation functions including weaker intermediate time subdiffusive transport, stronger two-step decay of the incoherent dynamic structure factor, longer mean alpha relaxation time, and stronger wavevector-dependent decoupling of relaxation times and the self-diffusion constant. The theoretical results are potentially testable via computer simulation, confocal microscopy, and dynamic light scattering.  相似文献   

11.
Studies on the nonlinear viscoelastic behavior of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) were carried out. The nonlinear viscoelastic region was determined through dynamic strain sweep test, and the critical shear strain (γc) of transition from linear viscoelastic region to nonlinear viscoealstic region was obtained. The relaxation time and modulus corresponding to the characteristic relaxation modes were also acquired through simulating the linear relaxation modulus curves using Maxwell model, and the damping functions were evaluated. Meanwhile, it is found that the nonlinear relaxation modulus obtained at relatively low shear strains follows the strain–time separation principle, and the damping function of SEEPS can be fit to Laun double exponential model well. Moreover, the successive start‐up of shear behavior, the steady shear behavior, and the relaxation behavior after steady shear were investigated, respectively. The results showed that Wagner model, derived from the K‐BKZ (Kearsley‐Bernstein, Kearsley, Zapas) constitutive equation, could simulate the experiment data well, and in addition, experiment data under the lower shear rates are almost identical with the fitting data, but there exists some deviation for data under considerable high shear rates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1309–1319, 2006  相似文献   

12.
In cellulose fibre-based green packaging, the poor resistance or barrier against water or water vapour has remained as one of the key challenges. In this work, cationic polymer latex, butyl acrylate-co-styrene/2-ethylhexylacrylate-co-methyl methacrylate (BA-co-St/EHA-co-MMA), with core–shell structure was especially synthesized and used as a wet-end additive to render the fibre or paper hydrophobic. TEM observation confirmed that the latex particles obtained indeed possessed desired characteristic of core–shell structure. The experimental results showed that the cationic polymer was especially suitable for use in papermaking processes due to its high retention with cellulose fibres. The surface modification of the natural fibre by the adsorption of cationic latex on the fibre surfaces potentially created the thin films of polymers on fibre surfaces. The resulting paper is highly hydrophobic with improved barrier property, as demonstrated by the high contact angles and relatively low WVTR value. Moreover, the mechanical properties of paper were maintained or even improved in the presence of an appropriate level of the latex.  相似文献   

13.
The effects of repeated large strain shear cycles on the dynamics of a glassy acrylate polymer are investigated using an original contact method. It is based on the measurement of the shear properties of thin (about 50 μm) polymer films geometrically confined within contacts between elastic substrates. Under small amplitude (300 nm–10 μm) oscillating lateral displacements, friction at the contact interface can be neglected and the measurement of the contact lateral response thus provides information about the rheology of the sheared polymer film. Using this approach, the complex shear modulus of the polymer film can be measured both in the linear (viscoelastic) and in the nonlinear regimes. The investigations are focused on the changes in mechanical properties induced in a large strain regime where the polymer glass is cyclically sheared up to the yield point. During the application of large strain cycles, the mechanical response of the polymer glass slowly evolves toward a quasi stabilized state which is described from the measurement of an apparent–strain dependent–complex shear modulus. When the applied strain is increased by a tenfold factor, this apparent shear modulus decreases by about one decade. These underlying changes are investigated from a consideration of the time dependent linear viscoelastic properties after the mechanical stimulus. Both mechanical rejuvenation and recovery (ageing) effects are evidenced. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
The viscoelastic properties of concentrated microlatex dispersions were investigated using oscillatory measurements. The latices were prepared by polymerisation of styrene-in-water microemulsions using UV and azobiisobutyronitrile initiator. The complex modulus, G*, storage modulus, G′ and loss modulus, G″ were measured as a function of strain amplitude (to obtain the linear viscoelastic region) and frequency at various latex volume fractions. Two latices with radii of 3.9 and 15.1 nm were investigated at 20°C. The results showed a change from predominantly viscous to a predominantly elastic response at a critical volume fraction, φc With the smaller latex, the concentration of the free surfactant in bulk solution was relatively low (2.6%) and the dispersions remained stable. φc was found to be 0.161. Assuming random packing of the particles (volume fraction=0.64), an estimate was obtained for the adsorbed layer thickness and this was found to be 1.4 nm, which is small for a surfactant chain with 15 ethylene oxide units. However, since the surfactant layer is a mixture of chains with 4 and 15 EO units, it is likely that the larger PEO chains will undergo interpenetration and/or compression on close approach of the particles. With the larger latex, on the other hand, there was high free surfactant concentration (9.1%) and this led to depletion flocculation. This results in a lower φc than would be the case in the absence of flocculation.  相似文献   

15.
A theoretical model is proposed for describing the melting of a metal nanoparticle embedded into a solid matrix. The model is based on a thermodynamic approach that takes into account matrix elasticity. The melting process is described for gold nanoparticles embedded in a solid matrix whose elastic modulus is varied in a wide range. Both spherical and ellipsoidal particles are considered. It is shown that particle melting temperature can be both higher and lower than the melting point of a bulk sample depending on the interaction intensity of the solid and liquid particle surfaces with the matrix. An increase in the shear modulus of the matrix causes a rise in the nanoparticle melting temperature, with the effect of the matrix elasticity becoming noticeable at some critical shear modulus. The conditions are revealed at which only a surface layer of a nanoparticle, the thickness of which depends on the particle radius and temperature, is melted.  相似文献   

16.
The viscoelasticity of shear thickening fluid (STF), a crucial property in the protective composite applications, with different silica nanoparticle concentrations in ionic liquid, 1-butyl-3-methylimidizolium tetrafluoroborate ([C4min]BF4), was studied at different temperatures and with shear frequencies through oscillatory shear, respectively. All STFs present strain thickening behavior. With increasing silica nanoparticle concentration, the critical shear strain for the onset of strain thickening decreased, while the complex viscosity, storage modulus, and loss modulus increased significantly. The critical shear strain increased with an increase of temperature, while the complex viscosity, storage modulus, and loss modulus decreased notably. The critical shear strain was constant with increasing the frequency of strain, while the complex viscosity decreases slightly. The storage modulus and loss modulus were independent with frequency in the strain thickening region. Nanoparticle clusters leading to strain thickening were demonstrated. The viscoelastic response of STFs to varying silica nanoparticle content, temperature, and frequency investigated here will help to design the specific application of STFs in soft protective composites and damping devices.  相似文献   

17.
通过在原子尺度上建模来研究Al、NiAl和Ni3Al合金在极端高温和高压下的点阵常数、弹性常数、弹性模量、泊松比和弹性各向异性因子等性质.计算得到的弹性常数均满足相应的力学稳定条件.由于NiAl和Ni3Al具有较高的B/G值,在0~30GPa内都属于延展性材料.通过包含电子热运动对体系吉布斯自由能贡献的全电子准谐近似方法,得到了高温高压下Al、NiAl和Ni3Al合金的热膨胀系数、体积模量、热容和熵等.计算值与已有的实验值和理论值符合较好.  相似文献   

18.
Poly(phenylene sulfide) (PPS)/poly(butylene terephthalate) (PBT) (60/40 w/w) blend nanocomposites (PPS/PBTs) were prepared by direct melt compounding of PPS, PBT, and organoclay. The morphology and rheology of PPS/PBTs were investigated using scanning electron microscope and transmission electron microscope as well as parallel plate rheometer. The intercalated clay tactoids are selectively located in the continuous PBT phase due to their nice affinity. A novel morphology evolution of the immiscible blend matrices is observed with increase of clay loadings. Small addition of clay increases the discrete PPS spherulite domain size. With increasing loading levels, the PPS phase transform to the fibrous structure and finally, to the partial laminar structure at the high loading levels, in which shows a characteristic of large‐scaled phase separation. The presence of clay, however, does not impede the coalescence of the PPS phase because the phase size increases with increasing clay loadings. The elasticity and blend ratio of two matrices are proposed as the important roles on the morphological evolution. Moreover, the laminar structure of PPS phase is very sensitive to the steady shear flow and is easy to be broken down to spherulite droplet at the low shear rate. However, high shear level is likely to facilitate the coalescence of those PPS phase and finally to phase inversion, both contributing to increases of the dynamic modulus after steady shear flow. In conclusion, the morphology of the immiscible polymer blend nanocomposites depends strongly on both the clay loadings and shear history. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1265–1279, 2008  相似文献   

19.
Bounds on the elastic constants are derived for semicrystalline polymers whose local morphology is lamellar. Local response matrices (stiffness and compliance) are formulated in three dimensions that simultaneously incorporate uniform in-plane strain and additive forces from layer to layer of crystalline and amorphous phases and uniform stress and additive displacements normal to the lamellar surfaces. Spatial averaging of the stiffness and compliance matrices under the assumption of axially symmetric orientation gives the upper and lower bounds on the longitudinal and transverse tensile moduli and the axial and transverse shear moduli as functions of the separate phase elastic constants, the volume percent crystallinity, and the moments of the orientation 〈cos2θ〉 and 〈cos4θ〉. The bounds are much tighter than the Voight upper and Reuss lower bounds that do not recognize phase geometry. Using the known crystal elastic constants of polyethylene, sample calculations on isotropic unoriented materials show that the divergence of bounds at high crystallinity necessitated by the extreme crystal anisotropy shows up only at very high crystallinity. At low temperature the bounds are tight enough to specify G1, the amorphous modulus, from the measured G and the known crystal elastic constants. At higher temperatures and lower G, the bounds are not tight enough for this purpose but the shear modulus versus crystallinity and temperature data are well fitted by the lamellar lower bound using a temperature-dependent, crystallinity-independent G1.  相似文献   

20.
Orthokinetic flocculation of clay dispersions at pH 7.5 and 22 degrees C has been investigated to determine the influence of interfacial chemistry and shear on dewatering and particle interactions behavior. Modification of pulp chemistry and behavior was achieved by using kaolinite and Na-exchanged (swelling) smectite clay minerals, divalent metal ions (Ca(II), Mn(II)) as coagulants and anionic polyacrylamide copolymer (PAM A) and non-ionic polyacrylamide homopolymer (PAM N) as flocculants. The pivotal role of shear, provided by a two-blade paddle impeller, was probed as a function of agitation rate (100-500 rpm) and time (15/60 s). Particle zeta potential and adsorption isotherms were measured to quantify the interfacial chemistry, whilst rheology and cryogenic SEM were used to investigate particle interactions and floc structure and aggregate network, respectively. Osmotic swelling, accompanied by the formation of "honeycomb" particle network structure and high yield stress, was produced by the Na-exchanged smectite, but not kaolinite, dispersions. Dispersion of the clay particles in 0.05 M Ca(II) or Mn(II) solution led to a marked reduction in particle zeta potential, complete suppression of swelling, honeycomb network structure collapse and a concomitant reduction in shear yield stress of smectite pulps. Optimum conditions for improved, orthokinetic flocculation performance of negatively charged clay particles, reflecting faster settling flocs comprised (i) coagulation, (ii) moderate agitation rate, (iii) shorter agitation time, and (iv) anionic rather than non-ionic PAM. The optimum dewatering rates were significantly higher than those produced by standard, manual-mixing flocculation techniques (plunging and cylinder inversion) commonly used in industry for flocculant trials. The optimum flocculation conditions did not, however, have a significant impact on the final sediment solid content of 20-22 wt%. Further application of shear to pre-sedimented pulps improved consolidation by 5-7 wt% solid. Higher shear yield stresses and greater settling rates were displayed by PAM A based than PAM N based pulps and this is attributed to the former's more expanded interfacial conformation and greater clay particles bridging ability. It appears that the intrinsic clay particles' physico-chemical properties and interactions limit compact pulp consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号