首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manganese chloride can form large particles with nucleic acids by electrostatic forces, which results in strong enhancement of resonance light scattering (RLS) signals. Based on this phenomenon, a novel and very simple assay of DNA was established. The work conditions have been investigated including the concentration of probe, the acidity of solution, the effect of ionic strength and the selectivity. In acidic solution, the enhanced RLS intensity at 389.5 nm was proportional to the concentration of nucleic acids in the range 0.05-10.0 microg ml(-1) for both ctDNA and fsDNA and 1.0-10.0 microg ml(-1) for yRNA. The limits of detection (LOD, 3sigma) were 0.17, 0.13 and 0.53 ng ml(-1) for ctDNA, fsDNA and yRNA, respectively. Synthetic samples were determined satisfactorily.  相似文献   

2.
Liu R  Yang J  Wu X  Sun C  Wu T 《The Analyst》2001,126(8):1367-1371
A new preresonance light scattering (PRLS) assay of nucleic acids is presented. At pH 7.30, the weak PRLS of morin-cetyltrimethylammonium bromide (CTMAB) can be greatly enhanced by the addition of nucleic acids, owing to the interaction between the nucleic acid and morin-CTMAB. After the addition of morin and CTMAB to DNA, the zeta potential of DNA decreases and changes from negative to positive, which is due to the formation of an associate, the aggregation of morin on nucleic acids and the electric neutralization between DNA and the cationic surfactant CTMAB. Mechanism studies showed that the enhanced PRLS comes from the aggregation of morin in the presence of nucleic acids and CTMAB. The enhanced intensity of PRLS is in proportion to the concentration of nucleic acids in the range 7.5 x 10(-9)-1.0 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-1.0 x 10(-6) g ml(-1) for salmon sperm DNA and 1.0 x 10(-8)-1.0 x 10(-6) g ml(-1) for yeast RNA. The detection limits are 3.4, 6.2 and 4.1 ng ml(-1) for calf thymus DNA, salmon sperm DNA and yeast RNA, respectively. Synthetic samples were analyzed satisfactorily.  相似文献   

3.
Resonance Rayleigh scattering (RRS) of the thionine (TH)-nucleic acids system and its analytical application have been studied. In pH 2.2 acidic buffer medium, some nucleic acids can react with TH to form TH-nucleic acids complex. This results in a great enhancement of RRS and the appearance of new RRS spectra. The RRS spectral characteristics of TH-ctDNA system, the affecting factors and the optimum conditions of the reaction have been investigated. The enhancement of the RRS signal is directly proportional to the concentration of nucleic acids in the range 0-10.0 microg/ml for calf thymus DNA and 0-15.0 microg/ml for yeast RNA, and its detection limits (3sigma) are 3.5 ng/ml for calf thymus DNA and 4.9 ng/ml for yeast RNA, respectively. The method shows a wide linear range and high sensitivity, and was applied to the determination of trace amounts of nucleic acid in synthetic samples and practical samples with satisfactory results. The bind properties for the interactions of TH with ctDNA were investigated using a Scatchard plot based on the measurement of the enhanced RRS data at 340 nm, and the binding number and intrinsic binding constant are 4.9 and 2.6 x 10(5) mol/dm(3), respectively.  相似文献   

4.
The interaction of bleomycinA5 with nucleic acids has been investigated by using resonance Rayleigh scattering (RRS), molecular absorption and fluorescence spectra. The result shows that in near pH 2.2 buffer medium and absence of any metal ions, nucleic acids are capable of binding with bleomycinA5 (BLMA5) to form complexes which can remarkably enhance the RRS intensity and result in batho- chromic and hyperchromic molecular absorption of nucleic acids and fluorescence quenching of bleomycinA5. The RRS spectral characteristics for the binding products of bleomycinA5 with various DNA and RNA are similar, and the maximum RRS peaks are at 301 nm for ctDNA and sDNA, 370 nm for hsDNA, 310 nm for RNAtypeVI and RNAtypeIII, respectively. The increments of RRS intensity are greatly different in which DNA enhances greatly and RNA enhances lightly. In this work, the optimum condi- tions of the interaction and some influencing factors have been investigated. The reaction mechanism and a binding model for the interaction of BLMA5 with the nucleic acids are discussed. In addition, a highly sensitive, simple and rapid new method for the determination of DNA has been developed. The detection limits (3σ) are 5.7 ng/mL for ctDNA, 7.4 ng/mL for sDNA and 9.2 ng/mL for hsDNA, respectively. The method can be applied to determination of trace amounts of DNA.  相似文献   

5.
The interaction of brilliant cresol blue (BCB) with nucleic acids in aqueous solution has been studied by spectrophotometry and Rayleigh light scattering (RLS) spectroscopy. Under suitable conditions, the RLS spectra of BCB changed significantly due to the presence of nucleic acids. RLS intensity of BCB at 364 nm is greatly enhanced with the addition of nucleic acids, and a new RLS peak is observed at 552 nm. This peak is about half the intensity of that at 364 nm. The results of this study show that BCB interacts with DNA possibly due to the cooperative effect of electrostatic attraction, intercalation, coordination and hydrophobic effect. Under optimum conditions, the increase of RLS at 364 nm of a BCB solution is proportional to the concentration of nucleic acids added. This result is the basis for a new RLS method for determination of nucleic acids. The linear range of ctDNA, fsDNA and yRNA is 0.12-4.70, 0.11-4.64 and 0.43-7.07 microg ml(-1), respectively.  相似文献   

6.
Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0 x 10(-9) to 1.0 x 10(-6) g ml(-1), 7.5 x 10(-8) to 1.0 x 10(-6) g ml(-1) and 7.5 x 10(-8) to 2.5 x 10(-6) g ml(-1) for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml(-1) (S/N = 3), respectively. Actual biological samples were satisfactorily determined.  相似文献   

7.
Lu W  Huang CZ  Li YF 《The Analyst》2002,127(10):1392-1396
A total internal reflected resonance light scattering (TIR-RLS) technique, the coupling of resonance light scattering (RLS) technique with total internal reflected light at the interface of two immiscible liquids, where the steep change of the refractive indexes occurs to result in an evanescent field, is proposed with the characteristics of separation and enrichment properties of analytes and direct use of oil-soluble reagents free from surfactants. At pH 8.69 and ion strength 0.008, ternary amphiphilic species formed by the interaction of nucleic acids, including calf thymus DNA (ctDNA), fish sperm DNA (fsDNA), and yeast RNA (yRNA), with Eu(III) in the presence of oil-soluble trioctylphosphine oxide (TOPO), are adsorbed to the water/tetrachloromethane (H20/CCl4) interface, giving rise to significantly enhanced TIR-RLS signals. It has been found that the enhanced TIR-RLS intensity at 348.0 nm is proportional to the concentration of thermally denatured ctDNA, fsDNA and yRNA in the range 0.002-2.5 microg ml(-1), 0.002-2.5 microg ml(-1) and 0.003-2.0 microg ml(-1), respectively and their limits of determination (3sigma) are 0.16 ng ml(-1), 0.19 ng ml(-1) and 0.28 ng ml(-1), correspondingly. Complicated artificial samples with highly interfering backgrounds were determined satisfactorily.  相似文献   

8.
Li ZP  Li KA  Tong SY 《Talanta》2001,55(4):669-675
Based on the strong enhancement effect of nucleic acids on resonance light scattering of dequalinium chloride, the determination method for micro amounts of nucleic acids has been developed. Under the experimental conditions (5.0x10(-5) mol l(-1) dequalinium, pH 7.0, at room temperature) the linear range of this assay is 0.04-10.0 mug ml(-1) for calf thymus DNA and fish sperm DNA, and 0.04-35.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 6.2 ng ml(-1) for calf thymus DNA, 7.4 ng ml(-1) for fish sperm DNA, and 7.0 ng ml(-1) for yeast RNA, respectively. Almost no interference can be observed from ionic strength, proteins, nucleoside, and most of the metal ions. Six synthetic samples were determined satisfactorily.  相似文献   

9.
Li Z  Li K  Tong S 《Talanta》2000,51(1):63-70
The large particle light scattering technique was first developed as a sensitive and convenient analysis method for microdetermination of nucleic acids by using a common spectrofluorometer. In 0.1 mol l(-1) HCl, H(2)SO(4), or HNO(3) solution, the nucleic acids can aggregate to form large particles whose dimensions are comparable to the wavelength of UV-Vis light. The large particles can result in very strong light scattering which is well proportional to the concentration of nucleic acids in the range of 0.06-100.0 mug ml(-1) for calf thymus DNA, 0.05-60.0 mug ml(-1) for fish sperm DNA, and 0.6-90.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 18.0 ng ml(-1) for calf thymus DNA, 16.0 ng ml(-1) for fish sperm DNA, and 57.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined with satisfactory results.  相似文献   

10.
The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5 x 10(-9)-7.5 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-2.5 x 10(-5) g ml(-1) for herring sperm DNA, and 5.0 x 10(-9)-2.5 x 10(-5) g ml(-1) for yeast RNA. The detection limits (S/N = 3) are 2.1 ng ml(-1) for calf thymus DNA, 6.5 ng ml(-1) for herring sperm DNA and 3.5 ng ml(-1) for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.  相似文献   

11.
For the first time, acetamiprid has been used to determine nucleic acid (DNA) using the resonance light scattering (RLS). The RLS of acetamiprid was greatly enhanced by DNA in the range of pH 1.6-1.8. A RLS peak at 313 nm was found, and the enhanced intensity of RLS at this wavelength was proportional to the concentration of DNA. The linear range of the calibration curve was 0-11.0 microg ml(-1) with the detection limit of 20 ng ml(-1). The nucleic acids in synthetic sample and in rice seedling extraction were determined satisfactorily. The interaction mechanism of acetamiprid and DNA is discussed. Mechanism studies show that the enhanced RLS is due to the aggregation of acetamiprid in the presence of DNA.  相似文献   

12.
The interaction of bleomycinA5 with nucleic acids has been investigated by using resonance Rayleigh scattering (RRS), molecular absorption and fluorescence spectra. The result shows that in near pH 2.2 buffer medium and absence of any metal ions, nucleic acids are capable of binding with bleomycinA5 (BLMA5) to form complexes which can remarkably enhance the RRS intensity and result in bathochromic and hyperchromic molecular absorption of nucleic acids and fluorescence quenching of bleomycinA5. The RRS spectral characteristics for the binding products of bleomycinA5 with various DNA and RNA are similar, and the maximum RRS peaks are at 301 nm for ctDNA and sDNA, 370 nm for hsDNA, 310 nm for RNAtypeVI and RNAtypeIII, respectively. The increments of RRS intensity are greatly different in which DNA enhances greatly and RNA enhances lightly. In this work, the optimum conditions of the interaction and some influencing factors have been investigated. The reaction mechanism and a binding model for the interaction of BLMA5 with the nucleic acids are discussed. In addition, a highly sensitive, simple and rapid new method for the determination of DNA has been developed. The detection limits (3σ) are 5.7 ng/mL for ctDNA, 7.4 ng/mL for sDNA and 9.2 ng/mL for hsDNA, respectively. The method can be applied to determination of trace amounts of DNA.  相似文献   

13.
Resonance Rayleigh light scattering (RRLS) spectra of cetylpyridine bromide (CPB)-nucleic acid system and their analytical application have been first studied. The effective factors and optimum conditions of the reaction have been investigated. After CPB and nucleic acid are mixed together, a new absorption peak located at 300 nm appeared, which is due to the formation of new ion associate of CPB-nucleic acid. The new associate can result in two apparent RRLS peaks at 310-400 and 460-480 nm. The RRLS peak of the corrected spectra located at 290-350 nm, which indicate that the RRLS is originated from the absorption of CPB-nucleic acid associate. The peak at 460-480 nm disappears in the corrected RRLS spectra, which indicated that this peak is originated from the strong line emission of the Xe lamp. Under the optimum conditions, the enhanced intensity of RRLS is proportional to the concentration of nucleic acid in the range of 5.0 x 10(-9)-5.0 x 10(-5) g ml(-1) for calf thymus DNA (ctDNA), 1.0 x 10(-8)-4.0 x 10(-5) g ml(-1) for fish sperm DNA (fsDNA) and 1.0 x 10(-8)-5.0 x 10(-5) g ml(-1) for yeast RNA (yRNA). The detection limits (S/N = 3) are 4.3, 8.7 and 7.4 ng ml(-1), respectively. Synthetic samples were determined satisfactorily.  相似文献   

14.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

15.
Cysteine-capped ZnS nanometer-sized fluorescent particles were produced by a colloidal aqueous synthesis. The functionalized nanoparticles are water-soluble and suitable for biological application. A synchronous fluorescence method has been developed for the rapid determination of DNA with functionalized nano-ZnS as a fluorescence probe, based on the synchronous fluorescence enhancement of cysteine-capped nano-ZnS in the presence of DNA. When Deltalambda =190 nm, maximum synchronous fluorescence is produced at 267 nm at pH 5.12. Under optimum conditions, the synchronous fluorescence intensity is proportional to the concentration of nucleic acids in the range 0.1-1.2 microg ml(-1) for calf thymus DNA, 0.1-0.6 microg ml(-1) for fish sperm DNA. The corresponding detection limit is 32.9 ng ml(-1) for calf thymus DNA and 24.6 ng ml(-1) for fish sperm DNA. This method is simple, inexpensive, rapid and sensitive. The recovery and relative standard deviation are satisfactory.  相似文献   

16.
In buffer medium of hexamethylene tetraamine-HCl at pH 5.9 the aluminium(III) complex with salicylidene-o-aminophenol (SAP) has a fluorescence peak at 508 nm with excitation at 410 nm. When nucleic acid coexists, it reacts with the complex within 8 min at room temperature to produce a non-fluorescent product, resulting in the decrease of fluorescence intensity of the aluminium complex. On basis of this, a new fluorometric method for nucleic acids determination is proposed. The calibration graphs for calf thymus DNA, fish sperm DNA and yeast RNA are linear up to 5.0, 4.0 and 3.0 microg ml(-1), respectively, and corresponding detection limits are 49, 52 and 62 ng ml(-1). The synthetic samples are analyzed with relative standard deviation of five measurements of 3.9-6.0%. DNA in an extraction product from human blood is determined using the calibration graph for calf thymus DNA, and the result is very close to that by the ethidium bromide assay. Compared with some established fluorometric methods, this procedure is sensitive, selective, reliable, reproducible and practical. The association constant of calf thymus DNA with the complex is estimated by two graphic methods. It is suggested that the binding reaction between nucleic acids with the complex proceeds in an intercalation way.  相似文献   

17.
A new assay of nucleic acids at nanogram level was established based on the enhanced resonance light scattering (RLS) signals of two zwitterionics cocamidopropyl hydroxysultaine (HSB) and lauryl betaine (BS-12). Under optimum conditions, the weak RLS signal of HSB is enhanced by nucleic acids, and the enhanced RLS intensity is proportional to the concentration of nucleic acids in the range of 0.02–7.3 mg l−1 for calf thymus DNA and 0.01–8.6 mg l−1 for fish sperm DNA. The detection limits were 1.5 ng ml−1 for calf thymus DNA and 1.9 ng ml−1 for fish sperm DNA. Plasmid DNA extracted from K-12-HB101 colt was determined with satisfactory results.  相似文献   

18.
This is the first report on the determination of nucleic acids with Pyronine B (PB) sensitized by cetyltrimethylammonium bromide (CTMAB) with resonance light-scattering (RLS) technique. Under the experimental conditions (1 x 10(-5) mol l(-1) PB, 1 x 10(-5) mol l(-1) CTMAB, pH 7.4, at room temperature, ionic strength 0.02 mol l(-1) NaCl), the interaction of PB with DNA sensitized by CTMAB results in enhanced RLS signals at 328 and 377 nm in the enhanced regions. It was found that the enhanced RLS intensity at 328 nm was proportional to the concentration of DNA in the suitable ranges. The linear range of this assay is 0.0-1.2 microg ml(-1) for calf thymus, 0.0-0.8 microg ml(-1) for fish sperm DNA (fsDNA), and 0.04-1.4 microg ml(-1) for yeast RNA, respectively. The detection limits (3 sigma) are 6.1 ng ml(-1) for calf thymus DNA (ctDNA), 11.2 ng ml(-1) for fish sperm DNA, and 8.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined satisfactorily. This method is simple, rapid and the dye is inexpensive and stable.  相似文献   

19.
A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL-1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL-1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL-1, 3.4 ng mL-1 and 2.9 ng mL-1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.  相似文献   

20.
Because the fluorescence of azur A can be quenched by adding nucleic acid, a sensitive fluorometric method for determination of nucleic acids at nanogram levels was established. Using optimal conditions, the calibration curves were linear in the range of 0-6.0 microg/mL for calf thymus deoxyribonucleic acid (ct DNA) and 0-7.0 microg/mL for herring sperm DNA (hs DNA). The limits of determination were 3.5 and 3.8 ng/mL, respectively, which shows the high sensitivity of this method. Triton X-100 microemulsion was applied as a sensitive media to enhance the sensitivity. The binding mode concerning the interactions of azur A with nucleic acids was also studied and the association constant with different binding numbers was obtained. The method has been applied to the determination of nucleic acid in both synthetic and real samples, such as cauliflower and pork liver, with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号