首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
A design method for two-dimensional cascades of turbomachinery blades is presented. A finite element potential flow program is extended to allow fluid to transpire through the blade surface, the displaced surface streamline defining a new blade geometry. The potential changes are related linearly to the transpired flow rates. New surface velocities may then be specified as a function of surface distance, in accordance with boundary layer considerations. Closure and smoothness of the new blade are successfully achieved, while large changes in the blade geometry are possible.  相似文献   

2.
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.  相似文献   

3.
In this paper, for two-dimensional unsteady incompressible flow, the Navier-Stokes equations without convection term are derived by the coordinate transformation along the streamline characteristic. The third-order Runge-Kutta method along the streamline is introduced to discrete the alternative Navier-Stokes equations in time, and spacial discretization is carried out by the Galerkin method, and then, the third-order accuracy finite element method is obtained. Meanwhile, the streamline velocity is uniformly approximated by initial velocity in each time step in order to reduce update frequency of total element matrix and improve calculation efficiency. Finally, some classic unsteady flow examples are calculated and analyzed by different calculation methods, which further demonstrate that the present method has more advantages in stability, permissible time step, dissipation, computational cost, and accuracy. The code can be downloaded at https://doi.org/10.13140/RG.2.2.27706.44484 .  相似文献   

4.
The present study investigates blood flow in a pulmonary artery. The aim is to gain a better understanding of offset value in vascular circulation through a two‐dimensional analysis of the Navier–Stokes equations. In this study, the hemodynamics in a blood vessel with truncated outlets at which constant pressure is specified is examined. To simplify the analysis, the vessel walls are regarded as being rigid. In quadratic elements, the streamline upwind Petrov–Galerkin finite element model is employed to simulate the incompressible Newtonian blood flow. The adopted finite element model introduces artificial damping terms solely in the streamline direction. With these terms added to the formulation, the discrete system is enhanced while solution accuracy is maintained without deterioration due to numerical diffusion errors. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the development of the finite element method in simulating scalar transport, governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is its ability to provide nodally exact solutions in the one‐dimensional case. Details of the derivation of the upwind scheme on quadratic elements are given. Extension of the one‐dimensional nodally exact scheme to the two‐dimensional model equation involves the use of a streamline upwind operator. As the modified equations show in the four types of element, physically relevant discretization error terms are added to the flow direction and help stabilize the discrete system. The proposed method is referred to as the streamline upwind Petrov–Galerkin finite element model. This model has been validated against test problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme, numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
7.
直接有限元法求解广义磁热弹二维旋转问题   总被引:1,自引:0,他引:1  
为了验证直接有限元法求解广义磁热弹耦合旋转问题的有效性及准确性,该文基于Lord和Shulman(L-S)广义热弹性理论,采用直接有限元方法,求解了置于磁场中的旋转半无限大体受热冲击作用的动态响应问题.文中给出了L-S型广义磁热弹耦合旋转问题的控制方程,建立了L-S型广义磁热弹旋转问题的虚位移原理,推导得到了相应的有限...  相似文献   

8.
The paper presents a framework for creep modeling of materials exhibiting different behaviors in different loading scenarios, such as tension, compression and shear, respectively. To this end an additive decomposition of the flow rule is assumed into a sum of weighted stress mode related quantities. The characterization of the stress modes is obtained in the octahedral plane of the deviatoric stress space in terms of a single scalar variable, such that stress mode dependent scalar weighting functions can be constructed. Furthermore the numerical implementation into a finite element program of the resulting set of constitutive equations and aspects of the sensitivity analysis for parameter identification are addressed. Verification of the constitutive equations is succeeded for an aluminum alloy AK4-1T and a superalloy René 95, respectively. In two finite element examples the proposed model is applied to investigate the relaxation behavior of a square plate with circular hole and the evolution of creep damage in a gasturbine blade subjected to centrifugal and thermal loads.  相似文献   

9.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

10.
This paper presents a detailed multi‐methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi‐discretizations of the scalar advection–diffusion equation. The errors are reported in terms of non‐dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid‐induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew‐symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov–Galerkin and its control‐volume finite element analogue, the streamline upwind control‐volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi‐discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super‐convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second‐order behaviour. In Part II of this paper, we consider two‐dimensional semi‐discretizations of the advection–diffusion equation and also assess the affects of grid‐induced anisotropy observed in the non‐dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi‐methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

11.
In the present paper, the author shows that the predictor/multi‐corrector (PMC) time integration for the advection–diffusion equations induces numerical diffusivity acting only in the streamline direction, even though the equations are spatially discretized by the conventional Galerkin finite element method (GFEM). The transient 2‐D and 3‐D advection problems are solved with the PMC scheme using both the GFEM and the streamline upwind/Petrov Galerkin (SUPG) as the spatial discretization methods for comparison. The solutions of the SUPG‐PMC turned out to be overly diffusive due to the additional PMC streamline diffusion, while the solutions of the GFEM‐PMC were comparatively accurate without significant damping and phase error. A similar tendency was seen also in the quasi‐steady solutions to the incompressible viscous flow problems: 2‐D driven cavity flow and natural convection in a square cavity. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The non-linear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.  相似文献   

13.
Based on the concept of the base forces by Gao, a new finite element method – the base force element method (BFEM) on complementary energy principle for two-dimensional geometrically non-linear problems is presented. A 4-mid-node plane element model of the BFEM for geometrically non-linear problem is derived by assuming that the stress is uniformly distributed on each sides of a plane element. The explicit formulations of the control equations for the BFEM are derived using the modified complementary energy principle. The BFEM is naturally universal for small displacement and large displacement problems. A number of example problems are solved using the BFEM and the results are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. A good agreement of the results, and better performance of the BFEM, compared to the displacement model, in the large displacement and large rotation calculations, is observed.  相似文献   

14.
This paper considers the streamline‐upwind Petrov–Galerkin (SUPG) method applied to the unsteady compressible Navier–Stokes equations in conservation‐variable form. The spatial discretization, including a modified approach for interpolating the inviscid flux terms in the SUPG finite element formulation, and the second‐order accurate time discretization are presented. The numerical method is discussed in detail. The performance of the algorithm is then investigated by considering inviscid flow past a circular cylinder. Validation of the finite element formulation via comparisons with experimental data for high‐Mach number perfect gas laminar flows is presented, with a specific focus on comparisons with experimentally measured skin friction and convective heat transfer on a 15° compression ramp. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A model having velocity components as basic unknowns is presented for calculation of two-dimensional flow past a symmetric profile with a wake in a channel. A modified least squares functional is used for the finite element solution of velocities. The determination of the position of the free streamline is treated as an optimum design problem. The concepts of cost function, geometry parameter and sensitivity derivative are employed. Numerical results are compared with published results obtained with streamfunction formulations.  相似文献   

16.
A cascade profile design method was proposed using the aerodynamic load and blade thickness distribution as the design constraints, which were correspondent to the demands from the aerodynamic characteristics and the blade strength. These constraints,together with all the other boundary conditions , were involved in the stationary conditions ofa variational principle , in which the angle-function was employed as the unknown function.The angle-function ( i. e. , the circumferential angular coordinate) was defined in the image plane composed of the stream function coordinate ( circumferential direction ) and streamline coordinate. The solution domain, i.e., the blade-to-blade passage, was transformed into a square in the image plane, while the blade contour was projected to a straight line ; thus, the difficulty of the unknown blade geometry was avoided. The finite element method was employed to establish the calculation code. Applications show that this method can satisfy the design requests on the blade  相似文献   

17.
This paper deals with the static and dynamic analyses of multi-layered plates with discontinuities. The two-dimensional first-order shear deformation theory is used to derive the fundamental system of equations in terms of generalized displacements. The fundamental set, with its boundary conditions, is solved in its strong form. A new method termed strong formulation finite element method is considered in the present paper to solve this kind of plates. This numerical methodology is the cohesion of derivative evaluation of partial differential systems of equations and a domain sub-division. The numerical results in terms of natural frequencies and maximum deflections are compared to literature and to the same results obtained with a finite element code. The stability, accuracy and reliability of the present methodology is shown through several numerical applications.  相似文献   

18.
基于余能原理的有限变形问题有限元列式   总被引:1,自引:0,他引:1  
利用基面力概念,推导了一种基于余能原理的有限变形问题显式有限元列式,可应用于结构的大位移、大转动问题。以基面力为状态变量来表达单元的余能,将有限变形情况下的单元余能分解为变形余能部分和转动余能部分,利用Lagrange乘子法推导出余能原理有限元的控制方程,编制了相应的非线性有限元程序。通过算例分析,说明该列式和程序的可靠性和精确性。  相似文献   

19.
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.  相似文献   

20.
基面力概念在几何非线性余能有限元中的应用   总被引:2,自引:0,他引:2  
彭一江  刘应华 《力学学报》2008,40(4):496-501
以基面力为基本未知量描述一个弹性系统的应力状态并表征单元的余能,将大变形的余能分解为变形余能部分和转动余能部分,采用Lagrange乘子法放松单元的平衡方程,利用已有的弹性大变形余能原理建立了一种几何非线性显式有限元模型,编制了相应的几何非线性余能原理有限元程序. 数值算例表明:该方法具有较好的收敛性和计算精度,可进行大载荷步的大位移、大转动计算.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号