首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

2.
Transient electronic absorption measurements reveal the vibrational relaxation dynamics of CH(3)I following excitation of the C-H stretch overtone in the gas phase and in liquid solutions. The isolated molecule relaxes through two stages of intramolecular vibrational relaxation (IVR), a fast component that occurs in a few picoseconds and a slow component that takes place in about 400 ps. In contrast, a single 5-7 ps component of IVR precedes intermolecular energy transfer (IET) to the solvent, which dissipates energy from the molecule in 50 ps, 44 ps, and 16 ps for 1 M solutions of CH(3)I in CCl(4), CDCl(3), and (CD(3))(2)CO, respectively. The vibrational state structure suggests a model for the relaxation dynamics in which a fast component of IVR populates the states that are most strongly coupled to the initially excited C-H stretch overtone, regardless of the environment, and the remaining, weakly coupled states result in a secondary relaxation only in the absence of IET.  相似文献   

3.
We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm?1) and amide II (~1560 cm?1) vibrational modes of N-methylacetamide (NMA) in CCl? solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of these amide modes. The results show that there is no energy transfer between the amide I (AI) and amide II (AII) modes. Instead we find that the vibrational energy is transferred on a picosecond time scale to a common combination tone of lower-frequency modes. By use of polarization-resolved femtosecond pump-probe measurements we also study the reorientation dynamics of the NMA molecules and the relative angle between the transition dipole moments of the AI and AII vibrations. The spectral dynamics at later times after the excitation (>40 ps) reveal the presence of a dissociation process of the NMA aggregates, trimers, and higher order structures into dimers and monomers. By measuring the dissociation kinetics at different temperatures, we determined the activation energy of this dissociation E(a) = 35 ± 3 kJ mol?1.  相似文献   

4.
We report the energy relaxation of the OH stretch vibration of HDO molecules contained in an HDO:D(2)O water bridge using femtosecond mid-infrared pump-probe spectroscopy. We found that the vibrational lifetime is shorter (~630 ± 50 fs) than for HDO molecules in bulk HDO:D(2)O (~740 ± 40 fs). In contrast, the thermalization dynamics following the vibrational relaxation are much slower (~1.5 ± 0.4 ps) than in bulk HDO:D(2)O (~250 ± 90 fs). These differences in energy relaxation dynamics strongly indicate that the water bridge and bulk water differ on a molecular scale.  相似文献   

5.
Ab initio surface hopping dynamics calculations were performed to study the photophysical behavior of cytosine and guanine embedded in DNA using a quantum mechanical/molecular mechanics (QM/MM) approach. It was found that the decay rates of photo excited cytosine and guanine were affected in a completely different way by the hydrogen bonding to the DNA environment. In case of cytosine, the geometrical restrictions exerted by the hydrogen bonds did not influence the relaxation time of cytosine significantly due to the generally small cytosine ring puckering required to access the crossing region between excited and ground state. On the contrary, the presence of hydrogen bonds significantly altered the photodynamics of guanine. The analysis of the dynamics indicates that the major contribution to the lifetime changes comes from the interstrand hydrogen bonds. These bonds considerably restricted the out-of-plane motions of the NH(2) group of guanine which are necessary for the ultrafast decay to the ground state. As a result, only a negligible amount of trajectories decayed into the ground state for guanine embedded in DNA within the simulation time of 0.5 ps, while for comparison, the isolated guanine relaxed to the ground state with a lifetime of about 0.22 ps. These examples show that, in addition to phenomena related to electronic interactions between nucleobases, there also exist relatively simple mechanisms in DNA by which the lifetime of a nucleobase is significantly enhanced as compared to the gas phase.  相似文献   

6.
Vitamin B(12) (cyanocobalamin, CNCbl) and its derivatives are structurally complex and functionally diverse biomolecules. The excited state and radical pair reaction dynamics that follow their photoexcitation have been previously studied in detail using UV-visible techniques. Similar time-resolved infrared (TRIR) data are limited, however. Herein we present TRIR difference spectra in the 1300-1700 cm(-1) region between 2 ps and 2 ns for adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), CNCbl, and hydroxocobalamin (OHCbl). The spectral profiles of all four cobalamins are complex, with broad similarities that suggest the vibrational excited states are related, but with a number of identifiable variations. The majority of the signals from AdoCbl and MeCbl decay with kinetics similar to those reported in the literature from UV-visible studies. However, there are regions of rapid (<10 ps) vibrational relaxation (peak shifts to higher frequencies from 1551, 1442, and 1337 cm(-1)) that are more pronounced in AdoCbl than in MeCbl. The AdoCbl data also exhibit more substantial changes in the amide I region and a number of more gradual peak shifts elsewhere (e.g., from 1549 to 1563 cm(-1)), which are not apparent in the MeCbl data. We attribute these differences to interactions between the bulky adenosyl and the corrin ring after photoexcitation and during radical pair recombination, respectively. Although spectrally similar to the initial excited state, the long-lived metal-to-ligand charge transfer state of MeCbl is clearly resolved in the kinetic analysis. The excited states of CNCbl and OHCbl relax to the ground state within 40 ps with few significant peak shifts, suggesting little or no homolysis of the bond between the Co and the upper axial ligand. Difference spectra from density functional theory calculations (where spectra from simplified cobalamins with an upper axial methyl were subtracted from those without) show qualitative agreement with the experimental data. They imply the excited state intermediates in the TRIR difference spectra resemble the dissociated states vibrationally (the cobalamin with the upper axial ligand missing) relative to the ground state with a methyl in this position. They also indicate that most of the TRIR signals arise from vibrations involving some degree of motion in the corrin ring. Such coupling of motions throughout the ring makes specific peak assignments neither trivial nor always meaningful, suggesting our data should be regarded as IR spectral fingerprints.  相似文献   

7.
利用时间分辨飞秒光电子影像技术结合时间分辨质谱技术, 研究了氯苯分子第一激发态的超快过程. 266.7 nm单光子将氯苯分子激发至第一激发态. 母体离子时间变化曲线包括了不同的双指数曲线. 一个是时间常数为(152±3) fs的快速组分, 另一个是时间常数为(749±21) ps的慢速组分. 通过时间分辨的光电子影像得到了时间分辨的光电子动能分布和角度分布. 时间常数为(152±3) fs的快速组分反映了第一激发态内部的能量转移过程, 这个过程归属为氯苯分子第一激发态耗散型振动驰豫过程. 时间常数为(749±21) ps的慢速组分反映了第一激发态的慢速内转换过程. 另外, 实验实时观察到典型的非对称陀螺分子(氯苯)激发态的非绝热准直和转动退相干现象. 并推算出第一次转动恢复时间为205.8 ps (C类型)和359.3 ps (J类型).  相似文献   

8.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

9.
The authors have studied the reorientational dynamics of isolated water molecules in a solution of N,N-dimethylacetamide (DMA). From linear spectra, the authors find that the water in this solution forms double hydrogen bond connections to the DMA molecules, resulting in the formation of DMA-water-DMA complexes. The authors use polarization-resolved mid-infrared pump-probe spectroscopy on the water in these complexes to measure the depolarization of three distinct transition dipole moments, each with a different directionality relative to the molecular frame (OH stretch in HDO, symmetric and asymmetric stretch normal modes in H(2)O). By combining these measurements, the authors find that the system exhibits bimodal rotational dynamics with two distinct time scales: a slow (7+/-1 ps) reorientation of the entire DMA-water complex and a fast (0.5+/-0.2 ps) "hinging" motion of the water molecule around the axis parallel to the connecting hydrogen bonds. Additionally, the authors observe an exchange of energy between the two normal modes of H(2)O at a time scale of 0.8+/-0.1 ps and find that the vibrational excitation decays through the symmetric stretch normal mode with a time constant of 0.8+/-0.2 ps.  相似文献   

10.
In continuation of our work on haloforms, the decay of CH stretch excitation in bromoform is modeled using molecular dynamics simulations. An intermolecular force field is obtained by fitting ab initio energies at select CHBr3 dimer geometries to a potential function. The solvent forces on vibrational modes obtained in the simulation are used to compute relaxation rates. The Landau-Teller approach points to a single acceptor state in the initial step of CH stretch relaxation. The time scale for this process is found to be 50-90 ps, which agrees well with the experimental value of 50 ps. The reason for the selectivity of the acceptor is elaborated. Results from a time-dependent approach to the decay rates are also discussed.  相似文献   

11.
The vibrationally excited cyanide ion (CN(-)) in H2O or D2O relaxes back to the ground state within several tens of picoseconds. Pump-probe infrared spectroscopy has determined relaxation times of T1 = 28 ± 7 and 71 ± 3 ps in H2O and D2O, respectively. Atomistic simulations of this process using nonequilibrium molecular dynamics simulations allow determination of whether it is possible at all to describe such a process, what level of accuracy in the force fields is required, and whether the information can be used to understand the molecular mechanisms underlying vibrational relaxation. It is found that, by using the best electrostatic models investigated, absolute relaxation times can be described rather more qualitatively (T1(H2O) = 19 ps and T1(D2O) = 34 ps) whereas the relative change in going from water to deuterated water is more quantitatively captured (factor of 2 vs 2.5 from experiment). However, moderate adjustment of the van der Waals ranges by less than 20% (for NVT) and 7.5% (for NVE), respectively, leads to almost quantitative agreement with experiment. Analysis of the energy redistribution establishes that the major pathway for CN(-) relaxation in H2O or D2O proceeds through coupling to the water-bending plus libration mode.  相似文献   

12.
The excited-state dynamics of protochlorophyllide a, a porphyrin-like compound and, as substrate of the NADPH/protochlorophyllide oxidoreductase, a precursor of chlorophyll biosynthesis, is studied by femtosecond absorption spectroscopy in a variety of solvents, which were chosen to mimic different environmental conditions in the oxidoreductase complex. In the polar solvents methanol and acetonitrile, the excited-state dynamics differs significantly from that in the nonpolar solvent cyclohexane. In methanol and acetonitrile, the relaxation dynamics is multiexponential with three distinguishable time scales of 4.0-4.5 ps for vibrational relaxation and vibrational energy redistribution of the initially excited S1 state, 22-27 ps for the formation of an intermediate state, most likely with a charge transfer character, and 200 ps for the decay of this intermediate state back to the ground state. In the nonpolar solvent cyclohexane, only the 4.5 ps relaxational process can be observed, whereas the intermediate intramolecular charge transfer state is not populated any longer. In addition to polarity, solvent viscosity also affects the excited-state processes. Upon increasing the viscosity by adding up to 60% glycerol to a methanolic solution, a deceleration of the 4 and 22 ps decay rates from the values in pure methanol is found. Apparently not only vibrational cooling of the S1 excited state is slowed in the more viscous surrounding, but the formation rate of the intramolecular charge transfer state is also reduced, suggesting that nuclear motions along a reaction coordinate are involved in the charge transfer. The results of the present study further specify the model of the excited-state dynamics in protochlorophyllide a as recently suggested (Chem. Phys. Lett. 2004, 397, 110).  相似文献   

13.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

14.
The 397.9 nm, 416.0 nm and 435.7 nm resonance Raman spectra were acquired for meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in tetrahydrofuran solution, and the Raman effect of relaxation dynamics was analyzed according to Herzberg-Teller (vibronic coupling) contributions. Density functional calculations were done to help the elucidation of the Soret (B(x) and B(y)-band) electronic transitions and the corresponding photo relaxation dynamics of TCPP. The spectra indicate that the Franck-Condon region photo relaxation dynamics upon S(0) → S(4) electronic transition are predominantly along the totally symmetric C(m)-ph stretch and Porphin ring breath stretch, and simultaneously along the asymmetric ν(C(m)-Phenyl) + δ(N-H) and ν(C(α)-C(m)-C(α))(as) + def (pyr) vibrational relaxation processes. The excited state structural dynamics of TCPP determined from the resonance Raman spectra show that the internal conversion between the B(y) and B(x) electronic states occurs in tens of femtoseconds, and the electronic relaxation dynamics were firstly interpreted taking into account the time-dependent wave packet theory and Herzberg-Teller (vibronic coupling) contributions.  相似文献   

15.
One-photon and two-photon ionization dynamics of tryptophan is studied by classical trajectory simulations using the semiempirical parametric method number 3 (PM3) potential surface in "on the fly" calculations. The tryptophan conformer is assumed to be in the vibrational ground state prior to ionization. Initial conditions for the trajectories are weighted according to the Wigner distribution function computed for that state. Vertical ionization in the spirit of the classical Franck-Condon principle is assumed. For the two-photon ionization process the ionization is assumed to go resonantively through the first excited state. Most trajectories are computed, and the analysis is carried out for the first 10 ps. A range of interesting effects are observed. The main findings are as follows: (1) Multiple conformational transitions are observed in most of the trajectories within the ultrafast duration of 10 ps. (2) Hydrogen transfer from the carboxyl group to the amino group and back has been observed. A zwitterion is formed as a transient state. (3) Two new isomers are formed during the dynamics, which have apparently not been previously observed. (4) Fast energy flow between the ring modes and the amino acid backbone is observed for both one- and two-photon ionization. However, the effective vibrational temperatures only approach the same value after 90 ps. The conformation transition dynamics, the proton-transfer processes and the vibrational energy flow are discussed and analyzed.  相似文献   

16.
The molecular structure and dynamics of the photoexcited metal-to-ligand-charge-transfer (MLCT) state of [Cu(I)(dmp)(2)](+), where dmp is 2,9-dimethyl-1,10-phenanthroline, in acetonitrile have been investigated by time-domain pump-probe X-ray absorption spectroscopy, femtosecond optical transient spectroscopy, and density functional theory (DFT). The time resolution for the excited state structural determination was 100 ps, provided by single X-ray pulses from a third generation synchrotron source. The copper ion in the thermally equilibrated MLCT state has the same oxidation state as the corresponding copper(II) complex in the ground state and was found to be penta-coordinate with an average nearest neighbor Cu-N distance 0.04 A shorter than that of the ground state [Cu(I)(dmp)(2)](+). The results confirm the previously proposed "exciplex" structure of the MLCT state in Lewis basic solvents. The evolution from the photoexcited Franck-Condon MLCT state to the thermally equilibrated MLCT state was followed by femtosecond optical transient spectroscopy, revealing three time constants of 500-700 fs, 10-20 ps, and 1.6-1.7 ns, likely related to the kinetics for the formation of the triplet MLCT state, structural relaxation, and the MLCT excited-state decay to the ground state, respectively. DFT calculations are used to interpret the spectral shift on structural relaxation and to predict the geometries of the ground state, the tetracoordinate excited state, and the exciplex. The DFT calculations also indicate that the amount of charge transferred from copper to the dmp ligand upon photoexcitation is similar to the charge difference at the copper center between the ground-state copper(I) and copper(II) complexes.  相似文献   

17.
Molecular dynamics simulations are used in conjunction with Landau-Teller, fluctuating Landau-Teller, and time-dependent perturbation theories to investigate energy flow out of various vibrational states of liquid CHBr3 and CDBr3. The CH stretch overtone is found to relax with a time scale of about 1 ps compared to the 50 ps rate for the fundamental. The relaxation pathways and rates for the CD stretch decay in CDBr3 are computed in order to understand the changes arising from deuteration. While the computed relaxation rate agrees well with experiments, the pathway is found to be more complex than anticipated. In addition to the above channels for CH(D) stretch relaxation that involve only the hindered translations and rotations of the solvent, routes involving off-resonant and resonant excitations of solvent vibrational modes are also examined. Finally, the decay of energy from low frequency states to near-lying solute states and solvent vibrations are studied.  相似文献   

18.
The vibrational dynamics of isolated water molecules dissolved in the nonpolar organic liquids 1,2-dichloroethane (C(2)H(4)Cl(2)) and d-chloroform (CDCl(3)) have been studied using an IR pump-probe experiment with approximately 2 ps time resolution. Analyzing transient, time, and spectrally resolved data in both the OH bending and the OH stretching region, the anharmonic constants of the bending overtone (v=2) and the bend-stretch combination modes were obtained. Based on this knowledge, the relaxation pathways of single water molecules were disentangled comprehensively, proving that the vibrational energy of H(2)O molecules is relaxing following the scheme OH stretch-->OH bend overtone-->OH bend-->ground state. A lifetime of 4.8+/-0.4 ps is determined for the OH bending mode of H(2)O in 1,2-dichloroethane. For H(2)O in CDCl(3) a numerical analysis based on rate equations suggests a bending overtone lifetime of tau(020)=13+/-5 ps. The work also shows that full 2-dimensional (pump-probe) spectral resolution with access to all vibrational modes of a molecule is required for the comprehensive analysis of vibrational energy relaxation in liquids.  相似文献   

19.
Ultrafast two-dimensional infrared (2DIR) spectroscopy has been proven to be an exceptionally useful method to study chemical exchange processes between different vibrational chromophores under thermal equilibria. Here, we present experimental results on the thermal equilibrium ion pairing dynamics of Li(+) and SCN(-) ions in N,N-dimethylformamide. Li(+) and SCN(-) ions can form a contact ion pair (CIP). Varying the relative concentration of Li(+) in solution, we could control the equilibrium CIP and free SCN(-) concentrations. Since the CN stretch frequency of Li-SCN CIP is blue-shifted by about 16 cm(-1) from that of free SCN(-) ion, the CN stretch IR spectrum is a doublet. The temperature-dependent IR absorption spectra reveal that the CIP formation is an endothermic (0.57 kJ∕mol) process and the CIP state has larger entropy by 3.12 J∕(K?mol) than the free ion states. Since the two ionic configurations are spectrally distinguishable, this salt solution is ideally suited for nonlinear IR spectroscopic investigations to study ion pair association and dissociation dynamics. Using polarization-controlled IR pump-probe methods, we first measured the lifetimes and orientational relaxation times of these two forms of ionic configurations. The vibrational population relaxation times of both the free ion and CIP are about 32 ps. However, the orientational relaxation time of the CIP, which is ~47 ps, is significantly longer than that of the free SCN(-), which is ~7.7 ps. This clearly indicates that the effective moment of inertia of the CIP is much larger than that of the free SCN(-). Then, using chemical exchange 2DIR spectroscopy and analyzing the diagonal peak and cross-peak amplitude changes with increasing the waiting time, we determined the contact ion pair association and dissociation time constants that are found to be 165 and 190 ps, respectively. The results presented and discussed in this paper are believed to be important, not only because the ion-pairing dynamics is one of the most fundamental physical chemistry problems but also because such molecular ion-ion interactions are of critical importance in understanding Hofmeister effects on protein stability.  相似文献   

20.
We report the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5-10) clusters following excitation to the dissociative IBr-A' 2Pi12 state of the chromophore via a 180 fs, 795 nm laser pulse. Dissociation from the A' state of the bare anion results in I- and Br products. Upon solvation with CO2, the IBr- chromophore regains near-IR absorption only after recombination and vibrational relaxation on the ground electronic state. The recombination time was determined by using a delayed femtosecond probe laser, at the same wavelength as the pump, and detecting ionic photoproducts of the recombined IBr- cluster ions. In sharp contrast to previous studies involving solvated I2-, the observed recombination times for IBr-(CO2)n increase dramatically with increasing cluster size, from 12 ps for n = 5 to 900 ps for n = 8,10. The nanosecond recombination times are especially surprising in that the overall recombination probability for these cluster ions is unity. Over the range of 5-10 solvent molecules, calculations show that the solvent is very asymmetrically distributed, localized around the Br end of the IBr- chromophore. It is proposed that this asymmetric solvation delays the recombination of the dissociating IBr-, in part through a solvent-induced well in the A' state that (for n = 8,10) traps the evolving complex. Extensive electronic structure calculations and nonadiabatic molecular dynamics simulations provide a framework to understand this unexpected behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号