首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laminar flame speed (LFS) is one of the most important physicochemical properties of a combustible mixture. At normal and elevated temperatures and pressures, LFS can be measured using propagating spherical flames in a closed chamber. LFS is also used in certain turbulent premixed flame modelling for combustion in spark ignition engines. Inside the closed chamber or engine, transient pressure rise occurs during the premixed flame propagation. The effects of pressure rise rate (PRR) on LFS are examined numerically in this study. One-dimensional simulations are conducted for spherical flame propagation in a closed chamber. Detailed chemistry and transport are considered. Different values of PRR at the same temperature and pressure are achieved through changing the spherical chamber size. It is found that the effect of PRR on LFS is negligible under the normal and engine-relevant conditions considered in this study. This observation is then explained through the comparison between the unsteady and convection terms in the energy equation for a premixed flame.  相似文献   

2.
柴油引燃天然气的双燃料燃烧机理的研究   总被引:20,自引:0,他引:20  
本文介绍在一台光学发动机上,利用高速数字摄像和数据采集技术,对柴油引燃天然气双燃料发动机的着火、火焰传播、气缸内压力、压力升高率等变化规律进行的研究。结果表明,采用双燃料的燃烧方式具有明显的多点着火型的预混燃烧特点,与采用纯柴油的燃烧方式相比,燃烧持续期短、产生的碳烟少,但爆发压力高、压力升高率大。  相似文献   

3.
进气加入CO2对直喷式柴油机燃烧的影响   总被引:6,自引:0,他引:6  
在直喷式柴油机上研究了进气加入CO2气体对其燃烧特性以及发动机性能和排放品质的影响.研究结果表明,进气加入CO2,柴油机的混合气形成过程几乎不受CO2气体加入量的影响,主要反映在着火延迟期随着CO2加入量的增加而变长,燃烧持续期缩短,燃烧最高温度降低.同时导致柴油机的最大爆发压力和压力升高率降低,并且其出现的位置后移,充气效率下降,排气温度上升.加入CO2后,NOx排放有较大下降,HC、CO稍有增加,烟度受到的影响不大.  相似文献   

4.
The physical and chemical phenomena that take place during fuel injection, entrainment and fuel-air mixing, cool-flame and ignition reaction, and combustion in diesel sprays still require extensive study. Global parameters such as liquid and vapor jet penetration lengths and spreading rates render useful yet still limited information. Understanding of the temporal evolution of the spray as it progresses through various steps is needed to develop advanced clean combustion modes and high-fidelity predictive models with sufficient accuracy. In this study, high-speed rainbow schlieren deflectometry (RSD) and OH* chemiluminescence are used to simultaneously image fuel-air mixing, cool-flame reactions, ignition, flame propagation and stabilization, and combustion in a transient diesel-like flame. A constant pressure flow rig (CPFR) is used to conduct multiple injections in quick succession to obtain a statistically relevant dataset. n-heptane was injected at nominal supply pressure of 1000 bar from a single-hole diesel injector into ambient at pressure of 30 bar and temperature of 800 K. About 500 injections were performed and analyzed to reveal structural features of non-reacting and reacting regions of the spray, quantify jet penetration and spreading rates, and study cool-flame behavior, ignition, flame propagation and stabilization at lift-off length, and combustion at upstream and downstream locations.  相似文献   

5.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

6.
An ignition time model is developed to model super knock in a compression engine. The model assumes that thermoacoustic interaction is the primary mechanism for the onset of super knock. By ignoring diffusive effects, a simple transport equation for the time to ignition of a fluid particle is derived. The significantly reduced cost of the chemistry model allows for complex hydrocarbon fuels to be simulated. Additionally, a zonal model for the secondary ignition of a charge due to the action of an expanding flame is developed. The flame compresses the unburned gas, causing the temperature and pressure to rise, which yields a pre-ignition in the unburned gas before the charge is engulfed by the flame. It is shown that the ignition time model compares well to the detailed chemical model with less than 1% difference in the prediction of ignition delay. Using this ignition time model, a multi-dimensional simulation of super knock in a rapid compression machine corresponding to the configuration of Wang et al. [1] is performed. It is found that interaction of the shock with the flame and the side wall of the cylinder significantly enhances the strength of the shock, and the in-cylinder pressure exceeds 300 bar. From the pressure rise predicted by the simulation, it is concluded that simulated ignition is a super knock event. Since the ignition time model excludes diffusive effects on the chemistry, it is proposed that acoustic resonance of the cylinder is the primary driver in the development of super knock for the configuration under examination and that inhomogeneous ignition due to transient flame compression could be a key mechanism for super knock.  相似文献   

7.
Fuel-stratified combustion has broad application due to its promising advantages in extension of lean flammability limit, improvement of flame stabilization, enhancement of lean combustion, etc. In the literature, there are many studies on flame propagation in fuel-stratified mixtures. However, there is little attention on ignition in fuel-stratified mixtures. In this study, one-dimensional numerical simulation is conducted to investigate the ignition and spherical flame kernel propagation in fuel-stratified n-decane/air mixtures. The emphasis is placed on assessing the effects of fuel stratification on the ignition kernel propagation and critical ignition condition. First, ignition and flame kernel propagation in homogeneous n-decane/air mixture are studied and different flame regimes are identified. The minimum ignition energy (MIE) of the homogeneous n-decane/air mixture is obtained and it is found to be very sensitive to the equivalence ratio under fuel-lean conditions. Then, ignition and flame kernel propagation in fuel-stratified n-decane/air mixture are investigated. The inner equivalence ratio and stratification radius are found to have great impact on ignition kernel propagation. The MIEs at different fuel-stratification conditions are calculated. The results indicate that for fuel-lean n-decane/air mixture, fuel stratification can greatly promote ignition and reduce the MIE. Six distinct flame regimes are observed for successful ignition in fuel-stratified mixture. It is shown that the ignition kernel propagation can be induced by not only the ignition energy deposition but also the fuel-stratification. Moreover, it is found that to achieve effective ignition enhancement though fuel stratification, one needs properly choose the values of stratification radius and inner equivalence ratio.  相似文献   

8.
Understanding the causes and mechanisms of large explosions, especially dust explosions, is essential for minimising devastating hazards in many industrial processes. It is known that unconfined dust explosions begin as primary (turbulent) deflagrations followed by a devastating secondary explosion. The secondary explosion may propagate with a speed of up to 1000 m/s producing overpressures of over 8–10 atm, which is comparable with overpressures produced in detonation. Since detonation is the only established theory that allows rapid burning producing a high pressure that can be sustained in open areas, the generally accepted view was that the mechanism explaining the high rate of combustion in dust explosions is deflagration-to-detonation transition. In the present work we propose a theoretical substantiation of an alternative mechanism explaining the origin of the secondary explosion producing high speeds of combustion and high overpressures in unconfined dust explosions. We show that the clustering of dust particles in a turbulent flow ahead of the advancing flame front gives rise to a significant increase of the thermal radiation absorption length. This effect ensures that clusters of dust particles are exposed to and heated by radiation from hot combustion products of dust explosions for a sufficiently long time to become multi-point ignition kernels in a large volume ahead of the advancing flame. The ignition times of a fuel–air mixture caused by radiatively heated clusters of particles is considerably reduced compared with the ignition time caused by an isolated particle. Radiation-induced multipoint ignitions of a large volume of fuel–air ahead of the primary flame efficiently increase the total flame area, giving rise to the secondary explosion, which results in the high rates of combustion and overpressures required to account for the observed level of overpressures and damage in unconfined dust explosions, such as for example the 2005 Buncefield explosion and several vapour cloud explosions of severity similar to that of the Buncefield incident.  相似文献   

9.
超声速预混可燃气流的点火与燃烧   总被引:3,自引:0,他引:3  
在激波风洞一激波管组合设备上开展了碳氢燃料超声速预混可燃气流的点火与燃烧实验研究。实验结果表明:利用激波对燃料进行预热,并以高温燃气作为引导火焰,可以有效缩短汽油空气超声速可燃混气的点火延迟时间,使之缩短到 0.2 ms以下。利用纹影照片对超声速燃烧流场结构作出了分析;研究了超声速预混可燃气流的温度以及当量比对超声速燃烧流场结构、点火与火焰传播特性的影响。  相似文献   

10.
Micro direct-injection (DI) strategy is often used to extend the operation range of the reactivity controlled compression ignition (RCCI) to high engine load, but its combustion process has not been well understood. In this study, the ignition and flame development of the micro-DI RCCI strategy were investigated on a light-duty optical engine using formaldehyde planar laser-induced fluorescence (PLIF) and high-speed natural flame luminosity imaging techniques. The premixed fuel was iso-octane and an oxygenated fuel of polyoxymethylene dimethyl ethers (PODE) was employed for DI. The fuel-air equivalence ratio of DI was kept at 0.09 and the premixed equivalence ratio was varied from 0 to 1. RCCI strategies with early and late DI timing at –25° and –5° crank angle after top dead center were studied, respectively. Results indicate that the early micro-DI RCCI features a single-stage high-temperature heat release (HTHR). The combustion in the low-reactivity region shows a combination of flame front propagation and auto-ignition. The late micro-DI RCCI presents a two-stage HTHR. The second-stage HTHR is owing to the combustion in the low-reactivity region that is dominated by flame front propagation when the premixed equivalence ratio approaches 1. For both early and late micro-DI RCCI, the intermediate-temperature heat release (ITHR) of iso-octane, indicated by formaldehyde, takes place in the low-reactivity region before the arrival of the flame front. This is quite different from the flame front propagation in spark-ignition (SI) engine that shows no ITHR in the unburned region. The DI fuel mass is a key factor that affects the combustion in the low-reactivity region. If the DI fuel mass is quite low, there is more possibility of flame front propagation; otherwise, sequential auto-ignition dominates. The emergence of the flame front propagation in micro-DI RCCI strategy reduces its combustion rate and peak pressure rise rate.  相似文献   

11.
The initial propagation processes of expanding spherical flames of CH4/N2/O2/He mixtures at different ignition energies were investigated experimentally and numerically to reduce the effect of ignition energy on the accurate determination of laminar flame speeds. The experiments were conducted in a constant-volume combustion bomb at initial pressures of 0.07???0.7?MPa, initial temperatures of 298???398?K, and equivalence ratios of 0.9???1.3 with various Lewis numbers. The A-SURF program was employed to simulate the corresponding flame propagation processes. The results show that elevating the ignition energy increases the initial flame propagation speed and expands the range of flame trajectory which is affected by ignition energy, but the increase rates of the speed and range decrease with the ignition energy. Based on the trend of the minimum flame propagation speed during the initial period with the ignition energy, the minimum reliable ignition energy (MRIE) is derived by considering the initial flame propagation speed and energy conservation. It is observed that MRIE first decreases and then increases with the increasing equivalence ratio and monotonously decreases with increasing initial pressure and temperature. As the Lewis number rises, MRIE increases. The results also suggest that during the data processing of the spherical flame experiment, the accuracy of determination of laminar flame speeds can be enhanced when taking the flame radius influenced by MRIE as the lower limit of the flame radius range. Then the flame radius influenced by MRIE was defined as RFR. It can also be found that there exist nonlinear relationships between RFR and the equivalence ratio and Lewis number, and the RFR decreases with increasing initial pressure and temperature.  相似文献   

12.
在一台光学发动机上,利用火焰高速成像技术和自发光光谱分析法,研究了燃料敏感性(S)为0和6时对发动机缸内火焰发展和燃烧发光光谱的影响。试验过程中,通过改变喷油时刻 (SOI=-25,-15和-5°CA ATDC) 使燃烧模式从部分预混燃烧过渡到传统柴油燃烧模式。通过使用正庚烷、异辛烷、乙醇混合燃料来改变燃料敏感性。结果表明,在PPC模式下(-25°CA ATDC),火焰发展过程是从近壁面区域开始着火,而后向燃烧室中心发展,即存在类似火焰传播过程,同时在燃烧室下部未燃区域也形成新的着火自燃点。敏感性对燃烧相位影响较大,对缸内燃烧火焰发展历程影响较小;高敏感性燃料OH和CH带状光谱出现的时刻推迟,表明高敏感性燃料高温反应过程推迟,且光谱强度更低,表明碳烟辐射强度减弱。在PPC到CDC之间的过渡区域(-15°CA ATDC),燃烧火焰发光更亮,燃烧反应速率比-25°CA ATDC时刻的反应速率更快。高、低敏感性燃料对缸压放热率的影响规律与-25°CA ATDC相近,此时的燃烧反应更剧烈,放热率更高,碳烟出现时刻更早。该喷油时刻下的光谱强度高于PPC模式下的光谱强度,说明此时的CO氧化反应与碳烟辐射更强。在CDC模式下(-5°CA ATDC),由于使用的燃料活性较低,燃烧放热时刻过于推迟,放热量很小,缸内燃烧压力低,因此燃料敏感性对缸压和放热率的影响不明显,但从燃烧着火图像中可以看到高敏感性燃料的火焰出现时刻较低敏感性燃料推迟。低敏感性燃料的燃烧初期蓝色火焰首先出现在燃烧室中心,着火火焰出现时刻更早,之后蓝色火焰从中心向周围扩散,呈现火焰传播为主导的燃烧过程;燃烧后期,局部混合气过浓区导致亮黄色火焰面积逐渐增大并向周围扩散。高敏感性燃料的火焰发展趋势与低敏感性燃料类似,黄色火焰的亮度与面积更小。尽管高、低敏感性燃料的OH和CH带状光谱的出现时间相近,但高敏感性燃料的光谱强度仍更低。综合分析,火焰发展结构与自发光光谱特征主要受喷油时刻的影响,燃料的敏感性主要影响着火时刻和火焰自发光光谱强度,且高敏感性燃料的光谱强度更低。  相似文献   

13.
The reliable generation of quasi-homogeneous autoignition inside a combustor fed by a continuous air flow would represent a milestone in realizing pressure gain combustion in gas turbines. In this work, the ignition distribution inside a stratified fuel–air mixture is analyzed. The ability of precise and reproducible injection of a desired fuel profile inside a convecting air flow is verified by applying tunable diode laser absorption spectroscopy in non-reacting measurements. High-speed, static pressure sensors and ionization probes allow for simultaneous detection of the flame and pressure rise at several axial positions in reactive measurements with dimethyl ether as fuel. A second, exchangeable combustion tube enables optical observation of OH* intensity in combination with pressure measurements. Experiments with three arbitrary fuel profiles show a set of ignition distributions that vary in shape, homogeneity, and the number of simultaneous autoignition events. Although the measurements show notable variation, a significant and reproducible influence of the fuel injection on the ignition distribution is observed. Results show that uniform autoignition leads to a coupling of the reaction front with the pressure rise and, therefore, induces a greater aerodynamic constraint than non-uniform ignition distributions, which are dominated by propagating deflagration fronts.  相似文献   

14.
The present investigation addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kg with attitude control estimated to be in the 1–10 mN thrust class. Micro-propulsion devices behave differently than macro-scale devices because of the differences in magnitude of flow rates and heat transfer. Reducing the combustor size increases the relative surface area, increasing the heat loss, and as combustors are continuously reduced in size, they approach the quenching dimensions of the propellants. Combustors of this size are expected to significantly benefit from surface catalysis processes. A miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials, and their simplicity in geometry can be used in fundamental simulations for validation purposes. Experimentally, we investigated the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter microtubes, with special emphases on ignition processes in fuel rich gaseous hydrogen and gaseous oxygen. Calculations of flame thickness and reaction zone thickness predict that the diameters of our test apparatus are below the quenching diameter of the propellants in most atmospheric test conditions. The temperature and pressure rise in resistively heated platinum microtubes and the exit hydrogen concentration were used as an indication of exothermic reactions. Data on imposed heat flux/preheat temperature required to achieve ignition versus mass flow rate are presented. With a plug flow model, the experimental conditions were simulated with detailed gas-phase chemistry and surface kinetics. Computational results, in general, support the experimental findings.  相似文献   

15.
Propagation of a confined spherically expanding flame induces isentropic compression that can culminate in autoignition and/or detonation under conducive thermodynamic conditions. This relatively simple technique measures a distinct ‘characteristic ignition delay time’ and complements other established approaches such as the rapid compression machine and shock tube. The present study details this methodology by examining the autoignition characteristics of dimethyl-ether/oxygen/nitrogen/helium reactive mixtures for equivalence ratios of 0.6 and 0.9, an initial temperature of 468 K, and initial pressures of 3 to 6 atm. The experimental results display the classic two-stage ignition typical of dimethyl-ether oxidation at low-temperatures with first-stage ignition occurring at approximately 3.6 times the initial pressure. To aid in the interpretation of the experimental results, two numerical models were used: a zero-dimensional batch reactor model, which accepts experimental pressure-time history and calculates the sensitivities of characteristic ignition delay times to kinetics, and a low Mach number, Lagrangian one-dimensional code that was developed to model both flame propagation and end-gas autoignition. Simulation results were shown to adequately capture the physics of unsteady flame propagation, end-gas autoignition, and the controlling reactions of the latter. It was found also that under certain conditions the behavior of first and second ignition stages could be modified by unsteady pressure effects.  相似文献   

16.
Partially premixed combustion (PPC) and reactivity controlled compression ignition (RCCI) are two new combustion modes in compression-ignition (CI) engines. However, the detailed in-cylinder ignition and flame development process in these two CI modes were not clearly understood. In the present study, firstly, the fuel stratification, ignition and flame development in PPC and RCCI were comparatively studied on a light-duty optical engine using multiple optical diagnostic techniques. The overall fuel reactivity (PRF number) and concentration (fuel-air equivalence ratio) were kept at 70 and 0.77 for both modes, respectively. Iso-octane and n-heptane were separately used in the port-injection (PI) and direct-injection (DI) for RCCI, while PRF70 fuel was introduced through direct-injection (DI) for PPC. The DI timing for both modes was fixed at –25°CA ATDC. Secondly, the combustion characteristics of PPC and RCCI with more premixed charge were explored by increasing the PI mass fraction for RCCI and using the split DI strategy for PPC. In the first part, results show that RCCI has shorter ignition delay than PPC due to the fuel reactivity stratification. The natural flame luminosity, formaldehyde and OH PLIF images prove that the flame front propagation in the early stage of PPC can be seen, while there is no distinct flame front propagation in RCCI. In the second part, the higher premixed ratio results in more auto-ignition sites and faster combustion rate for PPC. However, the higher premixed ratio reduces the combustion rate in RCCI mode and the flame front propagation can be clearly seen, the flame speed of which is similar to that in spark ignition engines but lower than that in PPC. It can be concluded that the ratio of flame front propagation and auto-ignition in RCCI and PPC can be modulated by the control over the fuel stratification degree through different fuel-injection strategies.  相似文献   

17.
Due to its nature as a carbon free fuel and carrying hydrogen energy ammonia has received a lot of attention recently to be used as an alternative to fossil fuel in gas turbine and internal combustion engines. However, several barriers such as long ignition delay, slow flame speed, and low reactivity need to be overcome before its practical applications in engines. One potential approach to improve the ignition can be achieved by using oxygen enriched combustion. In this study, oxygen-enriched combustion of ammonia is tested in a constant volume combustion chamber to understand its combustion characteristics like flame velocity and heat release rates. With the help of high speed Schlieren imaging, an ammonia-oxygen flame is studied inside the combustion chamber. The influence of a wide range of oxygen concentrations from 15 to 40% are tested along with equivalence ratios ranging from 0.9 to 1.15. Ammonia when ignited at an oxygen concentration of 40% with an equivalence ratio of ϕ= 1.1 at 10 bar has a maximum flame velocity of 112.7 cm/s. Reduced oxygen concentration also negatively affects the flame velocity, introducing instabilities and causing the flame to develop asymmetrically due to buoyancy effects inside the combustion chamber. Heat release rate (HRR) curves show that increasing the oxygen concentration from 21 to 35% of the mixture can help reduce the ignition delays. Peak HRR data shows increased sensitivity to air fuel ratios with increased oxygen concentrations in the ambient gas. HRR also shows an overall positive dependence on the oxygen concentration in the ambient gas.  相似文献   

18.
用光谱诊断技术测定高能单元推进剂的温度分布   总被引:3,自引:0,他引:3  
采用光谱诊断技术中的相对强度法测定了单元推进剂六硝基六氮杂异伍兹烷(HNIW)在3 MPa和5 MPa两种压力下的燃烧火焰温度分布。结果表明,相对强度法能准确地测出单元推进剂HNIW在整个燃烧过程的温度分布曲线,测得的最高燃烧火焰温度低于相应压力下的理论计算温度;测量压力升高,最高燃烧火焰温度更接近于理论计算温度。此实验结果说明:在较高压力条件下,用相对强度法能够准确地测定高能高燃速推进剂的燃烧火焰温度分布。  相似文献   

19.
The laminar flame speed is an important property of a reacting mixture and it is used extensively for the characterization of the combustion process in practical devices. However, under engine-relevant conditions, considerable reactivity may be present in the unburned mixture, introducing thus challenges due to couplings of auto-ignition and flame propagation phenomena. In this study, the propagation of transient, one-dimensional laminar flames into a reacting unburned mixture was investigated numerically in order to identify the parameters influencing the flame burning rate in the conduction-reaction controlled regime at constant pressure. It was found that the fuel chemical classification significantly influences the burning rate. More specifically, for hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned mixture temperature. On the other hand, for n-heptane flames that exhibit low temperature chemistry, the burning rate depends on the instantaneous temperature and composition of the unburned mixture in a coupled way. A new approach was developed allowing for the decoupling the flame chemistry from the ignition dynamics as well as for the decoupling of parameters influencing the burning rate, so that meaningful sensitivity analysis could be performed. It was determined that the burning rate is not directly affected by fuel specific reactions even in the presence of low temperature chemistry whose effect is indirect through the modification of the reactants composition entering the flame. The controlling parameters include but not limited to mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture.  相似文献   

20.
Flame kernel formations of close dual-point laser induced sparks were investigated experimentally, focusing on the hydrodynamic effects induced by an interaction of shock waves produced by the laser induced sparks. Dual sparks were produced near the center of the combustion chamber by splitting of a ray emitted by a 532 nm Nd:YAG laser. Methane/air mixtures were ignited under a quiescent condition in a constant volume chamber with detailed measurements of the ignition energy and the pressure history. The minimum ignition energy was derived as an ignition energy having an ignitability of 50% using the logistic regression method. The flame kernel initiation process was also observed by Schlieren photography using a high-speed video camera. The offset of laser induced sparks were adjusted by tuning angles of mirrors and lenses. The ignition performance of single- and close dual-point laser breakdown induced sparks was investigated in detail in terms of the minimum ignition energy and the combustion induction time. Time resolved Schlieren photographs indicated that two hump shaped kernels grew rapidly during the initial stage in the vicinity of the plane of symmetry defined by the laser sparks under certain conditions. Their formation was due to the hydrodynamic effects induced by Mach shock waves, which resulted from interactions of the dual shock waves. The minimum ignition energy of the close dual-point laser induced sparks near the lean limit at 1.0 MPa was much lower than that of single-point laser induced sparks, although it was greater than that of the single ones at 0.1 MPa. The combustion induction time, which was defined as the time corresponding to the maximum pressure increase rate, was shortened for close dual-point laser induced sparks, especially for lean mixtures at high pressure. Robust flame kernels were formed by close dual-point laser induced sparks with Mach shock wave formation, and improved ignition performance for lean mixtures at high pressure was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号