首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
High-quality GaN thin films are grown by rf-plasma assisted molecular beam epitaxy. The quality of the GaN epitaxial layer is significantly improved by using an intermediate-temperature GaN buffer layer (ITBL) in addition to a conventional 20-nm-thick low-temperature buffer layer. The GaN epitaxial layers demonstrate systematic improvements in the electron mobility increasing from 82 cm2 V-1 s-1, for films grown with just the low-temperature buffer layer, to about 380 cm2 V-1 s-1 for films grown with an ITBL of thickness 800 nm. The photoluminescence also indicates systematic improvements in the intensity and the full-width-half-maximum with the use of ITBL. Photoreflectance spectra are measured from the GaN films. Detailed analyses of the excitonic transition energy demonstrate that the residual strain relaxes rapidly with the use of ITBL, which is attributed to the observed improvements in the mobility and the PL spectra. Received: 30 November 2000 / Accepted: 4 December 2000 / Published online: 9 February 2001  相似文献   

2.
Crystalline Si thin-film solar cells: a review   总被引:3,自引:0,他引:3  
The present review summarizes the results of research efforts in the field of crystalline silicon thin-film solar cells on foreign substrates. The large number of competing approaches can be broadly classified according to the grain size of the crystalline Si films and the doping of the crystalline absorber. Currently, solar cells based on microcrystalline Si films on glass with an intrinsic or moderately doped absorber film achieve efficiencies around 10%, whereas thin-film cells fabricated from large-grained polycrystalline Si on high-temperature-resistant substrates have efficiencies in the range of 15%. The paper discusses the limitations of various approaches and describes recent developments in the area of thin, monocrystalline Si films that may open the way towards 20% efficient thin-film Si solar cells. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

3.
Nd,Cr:Gd3Sc2Ga3O12 (GSGG) thin films have been produced for the first time. They were grown on Si(001) substrates at 650 °C by pulsed laser ablation at 248 nm of a crystalline Nd,Cr:GSGG target rod. The laser plume was analyzed using time-of-flight quadrupole mass spectroscopy, and consisted of elemental and metal oxide fragments with kinetic energies typically in the range 10 to 40 eV, though extending up to 100 eV. Although films deposited in vacuum using laser fluences of 0.8±0.1 J cm−2 reproduced the Nd,Cr:GSGG bulk stoichiometry, those deposited using fluences above ≈3 J cm−2 resulted in noncongruent material transfer and were deficient in Ga and Cr. Attempts to grow films using synchronized oxygen or oxygen/argon pulses yielded mixed oxide phases. Under optimal growth conditions, the films were heteroepitaxial, with GSGG(001)[100]∥Si(001)[100], and exhibited Volmer–Weber-type growth. Room-temperature emission spectra of the films suggest efficient non-radiative energy transfer between Cr3+ and Nd3+ ions, similar to that of the bulk crystal. Received: 1 October 1999 / Accepted: 15 October 1999 / Published online: 23 February 2000  相似文献   

4.
A systematic study of the chemical bonding in hydrogenated amorphous germanium–carbon (a-Ge1-xCx:H)alloys using X-ray photoelectron spectroscopy (XPS) is presented. The films, with carbon content ranging from 0 at. % to 100 at. %, were prepared by the rf co-sputtering technique. Raman spectroscopy was used to investigate the carbon hybridization. Rutherford backscattering spectroscopy (RBS) and XPS were used to determine the film stoichiometry. The Ge 3d and C 1s core levels were used for investigating the bonding properties of germanium and carbon atoms, respectively. The relative concentrations of C–Ge, C–C, and C–H bonds were calculated using the intensities of the chemically shifted C 1s components. It was observed that the carbon atoms enter the germanium network with different hybridization, which depends on the carbon concentration. For concentrations lower than 20 at. %, the carbon atoms are preferentially sp3 hybridized, and approximately randomly distributed. As the carbon content increases the concentration of sp2 sites also increases and the films are more graphitic-like. Received: 4 May 1999 / Accepted: 24 November 1999 / Published online: 24 March 2000  相似文献   

5.
Laser surface alloying (LSA) with silicon was conducted on austenitic stainless steel 304. Silicon slurry composed of silicon particle of 5 μm in average diameter was made and a uniform layer was supplied on the substrate stainless steel. The surface was melted with beam-oscillated carbon dioxide laser and then LSA layers of 0.4–1.2 mm in thickness were obtained. When an impinged energy density was adjusted to be equal to or lower than 100 W mm−2, LSA layers retained rapidly solidified microstructure with dispersed cracks. In these samples, Fe3Si was detected and the concentration of Si in LSA layer was estimated to be 10.5 wt.% maximum. When the energy density was equal to or greater than 147 W mm−2, cellular grained structure with no crack was formed. No iron silicate was observed and alpha iron content in LSA layers increased. Si concentration within LSA layers was estimated to be 5 to 9 wt.% on average. Crack-free as-deposited samples exhibited no distinct corrosion resistance. The segregation of Si was confirmed along the grain boundaries and inside the grains. The microstructure of these samples changed with solution-annealing and the corrosion resistance was fairly improved with the time period of solution-annealing. Received: 2 September 1999 / Accepted: 6 September 1999 / Published online: 1 March 2000  相似文献   

6.
Monocrystalline Si films from the novel perforated-Si process are candidates for the fabrication of thin-film solar cells because their waffle shape enhances the optical absorption and hence permits the use of films with a thickness of only a few microns. We study the optics of waffle cells by three-dimensional Monte Carlo ray-tracing. A high photogeneration of 38 mA/cm2 from a film of thickness Wf=4 μm is possible due to a detached Al-back surface reflector that has an effective reflectance of 99.7% at 1250 nm. Our analytical model for light trapping in thin films explains this high reflectance. Two-dimensional numerical transport modeling reveals the existence of an optimum texture period p≈2Wf that originates from a carrier collection efficiency that increases with texture period while the photogeneration decreases with period. For well-passivated cells the optimum thickness Wf is at least one fifth of the diffusion length L. Efficiencies of 17% to 18% are feasible with waffle films of 1 to 3 μm in thickness. We introduce an analytic model for the minority carrier transport that agrees with two-dimensional numerical modeling to within 10% and reduces the computation time by orders of magnitude. This analytic model is also applicable to conformal thin-film geometries differing from the waffle geometry. Received: 1 March 1999 / Accepted: 28 March 1999 / Published online: 24 June 1999  相似文献   

7.
Compositionally graded (Ba1-xSrx)TiO3 (BST) (x:0.0∼0.25) thin films were grown on Pt (111)/TiO2/SiO2/Si (100) substrates using layer-by-layer pulsed laser deposition in the temperature range 550–650 °C. Both downgraded (Ba/Sr ratio varying from 100/0 at the bottom surface to 75/25 at the top surface) and upgraded (Ba/Sr ratio varying from 75/25 at the bottom surface to 100/0 at the top surface) BST films were prepared. Their microstructures were systematically studied by X-ray diffractometry and scanning electron microscopy. A grain morphology transition from large ‘rosettes’ (>0.30 μm) to small compact grains (70–110 nm) was observed in the downgraded BST films as the deposition temperature was increased from 550 to 650 °C. No such grain morphology transition was detected in the upgraded BST films. Dielectric measurements with metal electrodes revealed an enhanced dielectric behavior in the downgraded films. This enhancement is mainly attributed to the large compressive stress field built up near the interface between the downgraded film and substrate. Furthermore, the BaTiO3 layer in the downgraded BST films not only serves as a bottom layer but also as an excellent seeding layer for enhancing the crystallization of the subsequent film layers in the downgraded films. Received: 10 December 2001 / Accepted: 12 March 2002 / Published online: 19 July 2002 RID="*" ID="*"Corresponding author. Fax: 86-25/359-5535, E-mail: xhzhu@public1.ptt.js.cn  相似文献   

8.
 Nd: KGd(WO4)2 thin films were deposited by KrF laser ablation on MgO, YAP, YAG and Si substrates at temperatures up to 800 °C. Film crystallinity, morphology, stoichiometry (WDX, RBS and PIXE), excitation spectra, fluorescence, refractive index and waveguiding properties were studied in connection with deposition conditions. The best films were crystalline and exhibited losses of approximately 5 dB cm-1 at a wavelength of 633 nm. Received: 8 January 2001 / Accepted: 7 November 2001 / Published online: 11 February 2002  相似文献   

9.
Ferroelectric SrBi2Ta2O9 (SBT) films were grown by pulsed-laser deposition (PLD) at different substrate temperatures and fluences. A correlation between film structure and ferroelectric properties is established. The dielectric function ε of thin SBT films shows a Curie–Weiss behavior well below the peak temperature Tmax and relaxor-like behavior in the vicinity of Tmax. Domain walls have a strong influence on the dielectric and ferroelectric properties and on the polarization fatigue of SBT films below 100 °C. The formation of ferroelectric phases is favored at lower substrate temperatures by incorporating Bi2O3 template layers into the structure. Received: 18 March 1999 / Accepted: 19 March 1999 / Published online: 5 May 1999  相似文献   

10.
In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm−1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.  相似文献   

11.
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH4+Ar+H2 gas mixture at a low substrate temperature of 300 °C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si–Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/ and a hole concentration of 6.3×1018 cm−3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300 °C is proposed.  相似文献   

12.
A novel simple method of crystallization of hydrogenated amorphous silicon (a-Si:H) thin films is described. Namely, we studied a metal-induced crystallization enhanced by a dc electric field in sandwich p+–i–n+structures. The samples were fabricated from wide-bandgap a-Si:H with high hydrogen content (13–51 at. % H). Macroscopic islands of a-Si:H (up to ∼1 mm in diameter) in the region between upper (CrNi) and lower (ITO) contacts crystallize instantaneously when a sufficiently high dc electric field (≳105 V cm-1) is applied. The crystallization sets in at room temperature and ambient atmosphere and is spatially selective. A proposed microscopic mechanism of such an easy macroscopic crystallization consists in easy diffusion of Ni and/or Ni silicides (representing nucleation sites) through a dense network of voids in hydrogen-rich a-Si:H. Received: 30 November 2000 / Accepted: 3 May 2001 / Published online: 27 June 2001  相似文献   

13.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

14.
Epitaxial growth of high-quality hexagonal GaN films on sapphire substrates using light-radiation heating metal-organic chemical vapor deposition (LRH-MOCVD) is first reported. The deposition temperature is 950 °C, about 100 °C lower than that in normal rf-heating MOCVD growth. The FWHM of GaN (0002) peak of the X-ray diffraction rocking curve is 8.7 arc  min. Photoluminescence spectrum of GaN film shows that there is a very strong band-edge emission and no “yellow-band” luminescence. Hall measurement indicates that the n-type background carrier concentration of GaN film is 1.7×1018 cm-3 and the Hall mobility of it is 121.5 cm2/V s. It is suggested that the radiation of light in GaN growth enhances the dissociation of ammonia and decreases the disadvantages of the parasite reaction between trimethylgallium and ammonia. Received: 20 August 1998 / Accepted: 30 October 1998 / Published online: 10 March 1999  相似文献   

15.
The Ni2MnGa ferromagnetic alloys are one of these smart materials, that show a great interest for micro-electromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) when they are deposited as a thin film by rf sputtering. These films can be sputtered on silicon wafer in order to be easily integrated in Si-based device. Indeed, the use of this kind of substrate is very interesting because of the several well-known micromachining and integration technologies. However only heat treated thin films shows good functional properties that lay the problem of the silicon diffusion, as usually observed in the literature. In this work, a process (rf-sputtering process and annealing treatment) is proposed to elaborate martensite Ni2MnGa thin films on Si substrate without silicon diffusion. This paper presents results on samples annealed at 873 K during 6 h.  相似文献   

16.
Results are given for thermal tuning and modulation of a 1556-nm distributed feedback fibre laser by resistive heating of a thin silver film chemically deposited on the fibre. Without reaching the limits of performance, linear tuning is demonstrated at a rate of 1.72 pm/mW up to about 200 pm, and a peak-to-peak modulation of 100 MHz up to modulation frequencies of 60 Hz. The heat flow is analyzed, and the coated fibre is characterized in terms of the static and dynamic wavelength response to the applied electric power. The performance of the scheme is tested by recording part of the ν13 combination band spectrum of 13C2H2 with thermal modulation and scanning of the fibre laser. Received: 12 March 2002 / Revised version: 24 June 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +45/4593-1137, E-mail: sus@dfm.dtu.dk  相似文献   

17.
Lanthanum-modified lead titanate thin films have been prepared by a diol-based sol-gel method from precursor solutions with a growing excess of PbO. The films were crystallized with thermal treatments at 650 °C and heating rates of 10 °C  min-1 and higher than 500 °C min-1 by direct insertion in a pre-heated furnace. The structure, microstructure, and composition of the films were studied by grazing-incidence X-ray diffraction, electron microscopies, and energy-dispersive X-ray spectroscopy. A 20 mole % excess of PbO must be included in the precursor solution in order to compensate PbO volatilization occurring during the thermal treatment and, thus, obtain single-phase perovskite-type structure films. Non-textured porous films were obtained when a 10 °C min-1 rate is used, whereas [001]/[100] oriented films without porosity were obtained when rapid heating was used. Dielectric permittivity, ac current density, hysteresis loops, and switching curves were measured in the films. Values of remanent polarization and coercive field are comparable to those reported for similar films. The effects on the ferroelectric properties of an electrical and a post-crystallization thermal treatments were characterised. Received: 5 January 1998 / Accepted: 20 November 1998 / Published online: 17 March 1999  相似文献   

18.
Self-cleaning of a surface of nanotube arrays of anodic titanium oxide (ATO) is demonstrated. The ATO was prepared in fluoride ion containing sulfate electrolytes with a structure of 0.4 μm length, 100 nm pores diameter, 120 nm interpore distance, 25 nm pore wall thickness, a 8×109 pores cm−2 pore density, and 68.2% porosity. Prepared as thin films either directly from a Ti foil or on a glass substrate, these arrays have the property that water drops spread quickly over the surface of the films without irradiation. In contrast, a flat anatase TiO2 film requires irradiation with UV light for several minutes before the contact angle decreases to zero. The observed self-cleaning behavior of the ATO thin films is due to the capillary effect of the nanochannel structure and the superhydrophilic property of the anatase TiO2 surface inside the tube.  相似文献   

19.
Angle-resolved photoemission data are dis-cussed for five different Xe adlayers which exhibit electronic structures of different dimensionalities. Xe adsorption on Ni (110)-(1 × 2)-3Hand the (×) R30° Xe layer on Ru (001) reveal two-dimensional (2D) Xe-derived band structures that are characteristic for hexagonal rare-gas layers. Different Xe 5p dispersion widths on Ni and on Ru are found due to the difference in the Xe-Xe nearest-neighbor distance. For three rare-gas systems (two different Xe coverages on hydrogen-modified Pt (110)-(1 × 2)-H and Kr step decoration on a Pt (997) surface) true one-dimensional (1D) band structures are found. For Xe step adsorption on Pt (997), electronic localized (0D) behavior is observed due to an enlarged Xe-Xe separation. The qualitative differences of the band structures in the case of 2D, 1D and 0D rare-gas systems are demonstrated and are explained by the different dimensionalities of the various structures. Received: 3 August 2000 / Accepted: 4 August 2000 / Published online: 7 March 2001  相似文献   

20.
Textured LixNi2-xO (LNO) thin films have been fabricated on (001)MgO substrates by pulsed laser deposition technique. The as-deposited LNO films shows a conductivity of 2.5×10-3 Ω m and possess a transmittance of about 35% in the visible region. Subsequent deposition of Sr0.6Ba0.4Nb2O6 (SBN60) thin film on these LNO-coated MgO substrates resulted in a textured SBN layer with a 〈001〉 orientation perpendicular to the substrate plane. Phi scans on the (221) plane of the SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ± 8.2° as well as ± 45° with respect to the LNO/MgO substrate. Besides the highly (00l)-orientation, the SBN films also exhibited a dense microstructure as shown by scanning electron microscopy. The electro-optic coefficient (r33) of the SBN film was measured to be 186 pm/V. On the basis of our results, we have demonstrated that the LNO film can be used as a buffer layer as well as a transparent bottom electrode for waveguide applications. The SBN/LNO heterostructure is also a suitable candidate for integrated electro-optics devices. PACS  42.79.Gn; 42.82.Et; 78.20.Ci  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号