首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multilayer Si/Ge nanostructures grown by molecular-beam epitaxy at low temperatures (250–300°C) of germanium deposition are studied using photoluminescence and atomic-force microscopy (AFM). It is assumed that, upon low-temperature epitaxy, the wetting layer is formed through the intergrowth of two-dimensional (2D) and three-dimensional (3D) nanoislands.  相似文献   

2.
The structure and composition of phase-separated Langmuir–Blodgett monolayer films comprised of mixtures of arachidic acid (C19H39COOH) and perfluorotetradecanoic acid (C13F27COOH) were characterized using a combination of X-ray photoelectron emission microscopy (X-PEEM), secondary electron emission microscopy (SEEM) and atomic force microscopy (AFM). X-PEEM provides high lateral spatial resolution and is directly sensitive to the elemental and chemical (functional group) composition of these ultrathin films through the chemical sensitivity of NEXAFS spectroscopy; AFM provides high-resolution imaging, both in terms of lateral and vertical (height) film topography. SEEM provides additional structural and electronic information through work function and electron scattering effects. The combination is used for chemical mapping of the phase-separated domains in the monolayer film. Our results directly confirm previous AFM measurements that suggested that the discontinuous domains are enriched in arachidic acid, whereas the surrounding continuous domain is a mixture of both arachidic acid and perfluorotetradecanoic acid.  相似文献   

3.
The structure of n-hexadecanoic acid (HA) multilayers formed by spreading an ethanol solution containing this molecule onto a freshly cleaved mica surface has been studied by atomic force microscopy (AFM). AFM images of multilayers obtained with different coating time showed that HA molecules first formed some sporadic domains on mica surface. With the proceeding of the coating process, these domains gradually enlarged and coalesced, until formed a continuous film finally. It was observed that HA molecules were always adsorbed on mica surface with tilted even-numbered layers structure. The height of the repeated tilted bilayer film was measured to be approximately 3.8 ± 0.2 nm, which implied a ∼60° tilt molecular conformation of the HA bilayers on mica surface. Phase image confirmed that the HA multilayers terminated with the hydrophilic carboxylic acid groups. The formation mechanism of the HA multilayers was discussed in detail. Thus, resulted hydrophilic surfaces are of special interest for further study in biological or man-made member systems.  相似文献   

4.
The interparticle spacing of carboxyl functionalized gold nanoparticles (Au–COOH) was mediated by rigid cross‐linkers, octa(3‐aminopropyl)octasilsesquioxane (POSS–NH3 +) and poly(amidoamine) dendrimer terminated with hydroxyl groups (PAMAM–OH), and a flexible polymeric linker, poly(hexanyl viologen) (6‐VP). Regular interparticle spacing was achieved by utilizing POSS–NH3 + and PAMAM–OH dendrimer as cross‐linkers, whereas size growth of Au–COOH was observed featuring no interparticle spacing by utilizing 6‐VP as the cross‐linker.  相似文献   

5.
Thin In films on Ge(100), Si(100) andSi(111) are investigated using Auger-electron spectroscopy (AES), atomic force microscopy (AFM) andperturbed -angular correlation (PAC) spectroscopy, respectively. The growth mode of the metal films is characterized by in situ AES measurements, indicating distinct differences between the different substrate surfaces. Additional AFM investigations are used to monitor the film topography at higher metal coverage. Finally, the local crystalline structure of the films is studied by the PAC technique.  相似文献   

6.
IR spectra in the CO and OH stretching regions are reported for celluloses (partially acetylated, some also containing COOH groups). The CO bands are complicated and have marked dichroism; nonequivalent CO groups are present. The COOH groups give rise to a new C=O band at 1725 cm–1 and to an altered intensity distribution in the OH region, which may be due to molecular interactions produced by the COOH groups or to an altered mode of esterification.  相似文献   

7.
用激光分子束外延技术在SrTiO3(001)衬底上外延生长了高质量的BaTiO3< /sub>薄膜,薄膜的生长过程由反射式高能电子衍射仪(RHEED)原位实时监测,表明薄膜具有 二维层状生长模式.薄膜的晶体结构和表面形貌分别由X射线衍射和原子力显微镜表征,显示 该薄膜为完全c轴取向四方相晶体结构,其表面具有原子尺度光滑性.采用角分辨X射线光电 子谱技术(ARXPS),研究了BaTiO3薄膜表面最顶层原子种类和排列状况.结果表 明,BaTiO3 关键词: 激光分子束外延 3薄膜')" href="#">氧化物BaTiO3薄膜 最顶层表面 角分辨X射线光电子谱  相似文献   

8.
Liquid flame spray process (LFS) was used for depositing TiOx and SiOx nanoparticles on paperboard to control wetting properties of the surface. By the LFS process it is possible to create either superhydrophobic or superhydrophilic surfaces. Changes in the wettability are related to structural properties of the surface, which were characterized using scanning electron microscope (SEM) and atomic force microscope (AFM). The surface properties can be ascribed as a correlation between wetting properties of the paperboard and the surface texture created by nanoparticles. Surfaces can be produced inline in a one step roll-to-roll process without need for additional modifications. Furthermore, functional surfaces with adjustable hydrophilicity or hydrophobicity can be fabricated simply by choosing appropriate liquid precursors.  相似文献   

9.
In situ investigation of the growth and dissolution of retgersite crystals α-NiSO4 · 6H2O in water-ethanol solutions (10–50 wt % of ethanol) was made by atomic force microscopy (AFM). The habit of crystals grown in aqueous and water-ethanol solutions, as well as the Raman scattering spectra, were identical. It is shown that the typical peak of sulphate ions at 981 cm−1 does not change after the addition of ethanol. Absorption spectra of aqueous and water-ethanol solutions also have similar characteristic features. AFM images of hillocks on the (001) face of retgersite crystals were obtained directly in the process of their growth. Using a series of distorted AFM images obtained in situ, a geometrical calculation scheme is given, which allows one to recover the real direction of the growth steps. The kinetic coefficient of growth steps in aqueous and water-ethanol solutions of retgersite is estimated.  相似文献   

10.
11.
Bright-field transmission electron microscopy (TEM) images, high-resolution TEM (HRTEM) images, and fast-Fourier transformed electron-diffraction patterns showed that n-butyl terminated Si nanoparticles were aggregated. The formation of Si1−xCx nanocomposites was mixed with Si nanoparticles and C atoms embedded in a SiO2 layer due to the diffusion of C atoms from n-butyl termination shells into aggregated Si nanoparticles. Atomic force microscopy (AFM) images showed that the Si1−xCx nanocomposites mixed with Si nanoparticles and C atoms existed in almost all regions of the SiO2 layer. The formation mechanism of Si nanoparticles and the transformation mechanism of n-butyl terminated Si nanoparticles embedded into Si1−xCx nanocomposites mixed with Si nanoparticles and C atoms are described on the basis of the TEM, HRTEM, and AFM results. These results can help to improve the understanding of the formation mechanism of Si nanoparticles.  相似文献   

12.
The adhesion of gold nanoparticles either electrostatically or chemically attached to a substrate has been probed using AFM operating in force spectroscopy mode. A monolayer of –NH2 terminated 3-aminopropyltriethoxysilane or –SH terminated 3-mercaptopropyltrimethoxysilane was self-assembled onto a p-type silicon (100) substrate. Each silane monolayer provided the point of attachment for citrate stabilised gold colloid nanoparticles. In the case of the –NH2 terminated layer gold colloid assembly was driven by the electrostatic attraction between the negative, citrate-capped, gold nanoparticles and a partially protonated amine layer. In the case of the –SH terminated regions, well-known gold–thiol chemistry was used to chemically attach the nanoparticles. An atomic force microscope tip was chemically modified with 3-mercaptopropyltrimethoxysilane and scanned across each surface, where the cantilever deflection was measured at each x, y pixel of the image to create an array of adhesion force curves. This has allowed an unprecedented nanoscale characterisation of the adhesion force central to two common surface attachment methods of gold colloid nanoparticles, providing useful insights into the stability of nanoscale constructs.  相似文献   

13.
Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of InxGa1-xAs cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.  相似文献   

14.
In view of laser-assisted medical applications, the construction of silica-based sol-gel fiberoptic sensors based on photolon (Ph) and protoporphyrin IX (PP IX) is discussed. Electron microscopy and AFM were used to characterize the silica sol-gel coatings. AFM measurements indicate a change in the surface porosity. The PP IX-based sensors were constructed as a one-layer optode as well as a multilayered structure. An additional hybrid sensor made up of alternate layers of PP IX-and Ph-doped sol-gel was also constructed and examined. Sol-gel matrices were prepared from silicate precursor tetraethylorthosilicate (TEOS) mixed with ethanol in acid-catalyzed hydrolysis. The carrier matrices of photosensitive dyes were produced with factor R = 20, where R denotes the ratio of solvent moles (ethanol) to the number of TEOS moles. A multilayered coating was built up using the reverse-dipping technique. The overall coating thickness was determined by electron microscopy. Doped sol-gels with different PP IX concentrations were used to produce fiberoptic coatings. The film optodes with a different number of layers were examined by fluorescence spectroscopy. It was found that photolon and protoporphyrin IX entrapped in sol-gel preserve their chemical reactivity and have contact with the external environment. The hybrid sensor demonstrated clear fluorescence and a reversible behavior in gaseous environments.  相似文献   

15.
We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasitwo-dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mott transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., CT2, in the localized region. The CT2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.  相似文献   

16.
The effect of acids (HCl, HClO4, HNO3, and CH3COOH) on the fluorescence of coumarin-6 in organic solvents (acetonitrile, acetone, butanol-1, and ethanol) is studied. The regions of acid (HCl, HClO4, HNO3) concentrations that lead to a change in the fluorescence spectra are determined for each of the solvents. It is shown that, for all the solvents studied, acetic acid with a concentration within the region 10?1–10?6 M causes no significant changes in the fluorescence spectrum of coumarin-6. A mechanism of the coumarin-6 protonation is proposed.  相似文献   

17.
In the present work, silicon wafer surfaces were studied during a pure water dewetting process in ambient conditions by intermittent-contact atomic force microscopy (AFM). With an acid-free surface cleaning, large network structures of tens of microns in extension but only a few nanometers in height were observed, being stable for days. Fractal-like assemblies have been previously reported in a variety of different scenarios, for example, when an aqueous solution of carbon-based species, especially carbon nanotubes, is left to evaporate on a solid substrate, provided that no complete wetting was produced. Chemical mapping of silicon wafer surfaces, while unable to provide a spatial resolution comparable to that of the AFM, clearly showed the initially formed contact line to be enriched in carbon. Therefore, hydrophobic and/or non-soluble (or slightly soluble) substances which are present on every surface exposed to air are expected to be responsible for the observed fractal structures. Reactions of the network structures toward changing environmental conditions were analyzed. When increasing the ambient humidity, the structures grew only slightly, which is indicative of their highly (but not totally) hydrophobic nature. Heating the sample above 100 °C for about 10 h led to an almost complete disappearance of these nanostructures. Due to the lateral extension of these stable network heterogeneities, they are expected to affect contact angle measurements in wetting studies, especially at the micro- and nanoscale. When acid-cleaned wafers are used as substrate, deposited water extends as a film over the silicon surface without droplet formation. No fractal structures are then observed.  相似文献   

18.
Ultra-thin films of para-hexaphenyl (6P) were prepared on muscovite mica (0 0 1) utilizing organic molecular beam deposition (OMBD) under well defined ultra high vacuum (UHV) conditions. The 6P growth characteristics were studied as a function of substrate temperature and substrate surface conditions. For the initial state of layer growth, thermal desorption spectroscopy (TDS) was used to verify the existence of a wetting layer. In this monomolecular continuous wetting layer, the molecules lie flat on the surface and are rather strongly bonded. For thicker films, in-situ X-ray photoelectron spectroscopy (XPS) in combination with (TDS) was applied to reveal the kinetics of the layer growth. Ex-situ atomic-force microscopy (AFM) was used to determine the film morphology. In particular, the influence of surface modifications (carbon contamination, sputtering) on 6P layer growth was investigated. XPS and low energy electron diffraction (LEED) were used to characterize the mica surface before the film deposition. TDS and AFM revealed a considerable change in film growth, from a needle-like island growth of flat laying molecules on top of the wetting layer (for the air cleaved mica) to terrace-like film growth of standing molecules, without a wetting layer (after surface modifications).  相似文献   

19.
Rhodium nanoparticles were synthesized by the reduction of Rh3+ ion in ethanol solvent with use of the polyvinylpyrrolidone (PVP) of various molecular weights and the solvent of different volume ratios of water to ethanol. The formed Rh(PVP) nanoparticles have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) techniques. The TEM and AFM results show that the Rh(PVP) nanoparticles are monodispersed and do not agglomerate with each other. The particle size can be controlled by the molecular weight of PVP and/or the water/ethanol ratio of the solvent. The XPS and NEXAFS results indicate that the chlorine derived from RhCl3(3H2O) remains in the obtained nanoparticles but can be removed by heating.  相似文献   

20.
The absorption and photoluminescence spectra as well as the photoluminescence lifetimes of laser dyes (Phenylamine 430, Rhodamine 6G, Rhodamine 6G zwitterion, Rhodamine 4C, and Rhodamine 101) in new matrices are studied. These matrices represent the hybrid of two types of porous glasses (microporous and sol-gel glass). Chemical transformations of the dye molecules in the matrices are not found. The dye dimers mentioned above are also absent for concentrations up to 10-4 M. The luminescence efficiencies of the dyes in the matrix and in the ethanol solutions are compared. The difference in concentration dependences of the photoluminescence spectrum of Rhodamine 6G in the matrix and ethanol solution is found and discussed. The collective emission of the dyes in new matrices is observed at a power density of exciting radiation of 1025 cm-2s-1 and a concentration of 10-4 M. The energies and collective emission spectra of the dyes in the matrix are compared with those in the solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号