首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this paper, new planar isoparametric triangular finite elements (FE) based on the absolute nodal coordinate formulation (ANCF) are developed. The proposed ANCF elements have six coordinates per node: two position coordinates that define the absolute position vector of the node and four gradient coordinates that define vectors tangent to coordinate lines (parameters) at the same node. To shed light on the importance of the element geometry and to facilitate the development of some of the new elements presented in this paper, two different parametric definitions of the gradient vectors are used. The first parametrization, called area parameterization, is based on coordinate lines along the sides of the element in the reference configuration, while the second parameterization, called Cartesian parameterization, employs coordinate lines defined along the axes of the structure (body) coordinate system. The fundamental differences between the ANCF parameterizations used in this investigation and the parametrizations used for conventional finite elements are highlighted. The Cartesian parameterization serves as a unique standard for the triangular FE assembly. To this end, a transformation matrix that defines the relationship between the area and the Cartesian parameterizations is introduced for each element in order to allow for the use of standard FE assembly procedure and define the structure (body) inertia and elastic forces. Using Bezier geometry and a linear mapping, cubic displacement fields of the new ANCF triangular elements are systematically developed. Specifically, two new ANCF triangular finite elements are developed in this investigation, namely four-node mixed-coordinate and three-node ANCF triangles. The performance of the proposed new ANCF elements is evaluated by comparison with the conventional linear and quadratic triangular elements as well as previously developed ANCF rectangular and triangular elements. The results obtained in this investigation show that in the case of small and large deformations as well as finite rotations, all the elements considered can produce correct results, which are in a good agreement if appropriate mesh sizes are used.  相似文献   

2.
本文系统地研究了基于一致旋转场列式的绝对节点坐标 (ANCF consistentrotation-based formulation, ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元, 新单元在ANCF全参数梁的基础上,对梯度向量施加正交矩阵约束, 得到梯度与转角对时间导数之间的速度转换矩阵,从而引入转角参数. 新单元节点处完全消除了泊松闭锁和剪切效应,这是与传统ANCF/CRBF刚性截面梁单元的不同之处. 然后,对比分析了这三种ANCF/CRBF刚性截面梁单元泊松闭锁的特点.发现该类型单元对节点的横向梯度施加了运动学约束, 导致节点处截面不能变形,无法捕捉泊松效应, 但是单元内部能完全捕捉,这种不连续情况会加重单元整体的泊松闭锁问题. 并且发现对单元梯度约束的越多,闭锁问题越严重. 随后, 分别采用两种闭锁缓解技术, 弹性线方法和应变分解方法,进一步研究了单元的收敛性. 最终,通过多种静力学和动力学测试研究了泊松闭锁对ANCF/CRBF平面梁单元计算精度的影响及闭锁缓解技术在该类型单元上的缓解效果.   相似文献   

3.
The absolute nodal coordinate formulation (ANCF) is characterized by being developed specifically for dynamic analysis of large deformation problems. The objective of the study is to investigate how the shape of the initial mesh configuration influences the obtained numerical solution. After a thorough review of three available formulations, they are used in three different convergence studies. Initially a reference study is conducted to determine how the ANCF performs in an uniform and rectangular mesh. Subsequently, the ANCF methods sensitivity to irregular mesh is investigated and finally, the ability of the ANCF method to describe curved structures is evaluated. This study concludes that thin ANCF shell elements are sensitive to both the initial shape and their loading condition. Furthermore, both the initial configuration and the loading condition affect how the ANCF-based models converge. It is suggested that models containing thin ANCF shell elements are subjected to extensive validation studies, before they are used in a design process.  相似文献   

4.
In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C 2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.  相似文献   

5.
Integration of B-spline geometry and ANCF finite element analysis   总被引:1,自引:0,他引:1  
The goal of this investigation is to introduce a new computer procedure for the integration of B-spline geometry and the absolute nodal coordinate formulation (ANCF) finite element analysis. The procedure is based on developing a linear transformation that can be used to transform systematically the B-spline representation to an ANCF finite element mesh preserving the same geometry and the same degree of continuity. Such a linear transformation that relates the B-spline control points and the finite element position and gradient coordinates will facilitate the integration of computer aided design and analysis (ICADA). While ANCF finite elements automatically ensure the continuity of the position and gradient vectors at the nodal points, the B-spline representation allows for imposing a higher degree of continuity by decreasing the knot multiplicity. As shown in this investigation, a higher degree of continuity can be systematically achieved using ANCF finite elements by imposing linear algebraic constraint equations that can be used to eliminate nodal variables. The analysis presented in this study shows that continuity of the curvature vector and its derivative which corresponds in the cubic B-spline representation to zero knot multiplicity can be systematically achieved using ANCF finite elements. In this special case, as the knot multiplicity reduces to zero, the recurrence B-spline formula causes two segments to automatically blend together forming one cubic segment defined on a larger domain. Similarly in this special case, the algebraic constraint equations required for the C 3 continuity convert two ANCF cubic finite elements to one finite element, demonstrating the strong relationship between the B-spline representation and the ANCF finite element representation. For the same order of interpolation, higher degree of continuity at the finite element interface can lead to a coarser mesh and to a lower dimensional model. Using the B-spline/ANCF finite element transformation developed in this paper, the equations of motion of a finite element mesh that represents exactly the B-spline geometry can be developed. Because of the linearity of the transformation developed in this investigation, all the ANCF finite element desirable features are preserved; including the constant mass matrix that can be used to develop an optimum sparse matrix structure of the nonlinear multibody system dynamic equations.  相似文献   

6.
胡景晨  王天舒 《力学学报》2016,48(5):1172-1183
相比于传统的浮动坐标法,绝对节点坐标法(absolute nodal coordinate formulation,ANCF)在处理柔性体非线性大变形问题上具有显著优势,但是对于ANCF的求解目前主要依据拉格朗日方程等分析力学原理建立微分代数方程(differential algebraic equation,DAE)进行,其算法复杂度为O(n2)或O(n3)(n为系统自由度),且求解过程存在位置或速度的违约问题.据此,研究了一种O(n)算法复杂度的递推绝对节点坐标法(recursive absolute nodal coordinate formulation,RANCF).该方法采用ANCF描述大变形柔性体,借鉴铰接体递推算法(articulatedbody algorithm,ABA)思路建立多柔体系统逐单元的运动学和动力学递推关系,得到微分形式的系统动力学方程(ordinary differential equation,ODE).在ODE方程中,系统广义质量阵为三对角块矩阵,通过恰当的矩阵处理,可以得到逐单元求解该方程的递推算法.在此基础上,给出了RANCF算法的详细流程,并对流程中每个步骤进行了细致的算法效率分析,证明了RANCF是算法复杂度为O(n)的高效算法.RANCF方法保留了ANCF对大转动、大变形多柔体系统精确计算的优点,同时极大地提升了算法效率,特别在处理高自由度复杂多柔体系统中具有显著优势.并且该方法采用ODE求解,无DAE的违约问题,因此具有更高的算法精度.最后,在算例部分,通过MSC.ADAMS仿真软件、能量守恒测试、算法复杂度曲线对RANCF的正确性、计算精度和计算效率进行了验证.  相似文献   

7.
8.
The element created in this investigation is based on the it absolute nodal coordinate formulation (ANCF) which has been successfully used in flexible multibody system dynamic and integration of computer aid design and analysis (ICADA). When modeling a B-spline curve with ANCF beam element, it is the common manner to convert this curve into a series of Bézier curves because the systematical conversion between ANCF beam element and a Bézier curve has already been built. In order to avoid the constrain equation produced in this method and to express a B-spline curve using only one element, an alternative approach is developed, leading to the piecewise ANCF (PANCF) beam element. It is demonstrated that when two ANCF beam elements are connected according to a particular continuity, they can constitute a PANCF element. Besides, a new PANCF element will be produced when an ANCF element is connected to an existing PANCF element. The continuity condition can be automatically ensured by the selection of nodal coordinates and the calculation of the piecewise continuous shape functions. The algorithm for converting a B-spline curve to a PANCF beam element is then given. There also are discussions on the features of PANCF element. When two neighboring segments of PANCF element have the same assumed length, the position vector at the interface cannot be expressed by the other coordinates so the position vector is preserved in the \(C^{2}\) continuous situation. Two examples are given to conclude the interpolation and continuity properties of the shape function and to demonstrate the feasibility of this PANCF in the ICADA.  相似文献   

9.
The absolute nodal coordinate formulation (ANCF) has been used in the analysis of large deformation of flexible multibody systems that encompass belt drive, rotor blade, and cable applications. As demonstrated in the literature, the ANCF finite elements are ideal for isogeometric analysis. The purpose of this investigation is to establish a relationship between the B-splines, which are widely used in the geometric modeling, and the ANCF finite elements in order to construct continuum models of large-deformation geometries. This paper proposes a simplified approach to map the B-spline surfaces into ANCF thin plate elements. Matrix representation of the mapping process is established and examined through numerical examples successfully. The matrix representation of the mapping process is used because of its suitability of computer coding and to minimize the calculation time. The error estimation is carried out by analyzing the gap between the points of each ANCF element and the corresponding points of the portion of the B-spline surface. The Hausdorff distance is used to study the effect of the number of control points, the degree of interpolation, and the knot multiplicity on the mapped geometry. It is found that cubic interpolation is recommended for optimizing the accuracy of mapping the B-spline surface to ANCF thin plate elements. It is found that thin plate element in ANCF missing a number of basis functions which considered a source of error between the two surfaces, as well as it does not allow to converting the ANCF thin plate elements model to B-spline surface. In this investigation, an application example of modeling large-size wind turbine blade with uniform structure is illustrated. The use of the continuum plate elements in modeling flexible blades is more efficient because of the relative scale between the plate thickness and its length and width and the high flexibility of its structure. The numerical results are compared with the results of ANSYS code with a good agreement. The dynamic simulation for mapped surface model shows a numerical convergence, which ensures the ability of using the proposed approach for applications of dynamics for design and computer-aided design.  相似文献   

10.
In multibody system dynamics, the absolute nodal coordinate formulation(ANCF)uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation,the rational absolute nodal coordinate formulation(RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.  相似文献   

11.
A curved gradient deficient shell element for the Absolute Nodal Coordinate Formulation (ANCF) is proposed for modeling initially thin curved structures. Unlike the fully parameterized elements of ANCF, a full mapping of the gradient vectors between different configurations is not available for gradient deficient elements, therefore it is cumbersome to work in a rectangular coordinate system for an initially curved element. In this study, a curvilinear coordinate system is adopted as the undeformed Lagrangian coordinates, and the Green–Lagrange strain tensor with respect to the curvilinear frame is utilized to characterize the deformation energy of the shell element. As a result, the strain due to the initially curved element shape is eliminated naturally, and the element formulation is obtained in a concise mathematical form with a clear physical interpretation. For thin structures, the simplified formulations for the evaluation of elastic forces are also given. Moreover, an approach to deal with the on-surface slope discontinuity is also proposed for modeling general curved shell structures. Finally, the developed element of ANCF is validated by several numerical examples.  相似文献   

12.
Existing multibody system (MBS) algorithms treat articulated system components that are not rigidly connected as separate bodies connected by joints that are governed by nonlinear algebraic equations. As a consequence, these MBS algorithms lead to a highly nonlinear system of coupled differential and algebraic equations. Existing finite element (FE) algorithms, on the other hand, do not lead to a constant mesh inertia matrix in the case of arbitrarily large relative rigid body rotations. In this paper, new FE/MBS meshes that employ linear connectivity conditions and allow for arbitrarily large rigid body displacements between the finite elements are introduced. The large displacement FE absolute nodal coordinate formulation (ANCF) is used to obtain linear element connectivity conditions in the case of large relative rotations between the finite elements of a mesh. It is shown in this paper that a linear formulation of pin (revolute) joints that allow for finite relative rotations between two elements connected by the joint can be systematically obtained using ANCF finite elements. The algebraic joint constraint equations, which can be introduced at a preprocessing stage to efficiently eliminate redundant position coordinates, allow for deformation modes at the pin joint definition point, and therefore, this new joint formulation can be considered as a generalization of the pin joint formulation used in rigid MBS analysis. The new pin joint deformation modes that are the result of C 0 continuity conditions, allow for the calculations of the pin joint strains which can be discontinuous as the result of the finite relative rotation between the elements. This type of discontinuity is referred to in this paper as nonstructural discontinuity in order to distinguish it from the case of structural discontinuity in which the elements are rigidly connected. Because ANCF finite elements lead to a constant mass matrix, an identity generalized mass matrix can be obtained for the FE mesh despite the fact that the finite elements of the mesh are not rigidly connected. The relationship between the nonrational ANCF finite elements and the B-spline representation is used to shed light on the potential of using ANCF as the basis for the integration of computer aided design and analysis (I-CAD-A). When cubic interpolation is used in the FE/ANCF representation, C 0 continuity is equivalent to a knot multiplicity of three when computational geometry methods such as B-splines are used. C 2 ANCF models which ensure the continuity of the curvature and correspond to B-spline knot multiplicity of one can also be obtained. Nonetheless, B-spline and NURBS representations cannot be used to effectively model T-junctions that can be systematically modeled using ANCF finite elements which employ gradient coordinates that can be conveniently used to define element orientations in the reference configuration. Numerical results are presented in order to demonstrate the use of the new formulation in developing new chain models.  相似文献   

13.
A solid tetrahedral finite element employing the absolute nodal coordinate formulation (ANCF) is presented. In the ANCF, the mass matrix and vector of the generalized gravity forces used in the equations of motion are constant, whereas the vector of the elastic forces is highly nonlinear. The proposed solid element uses translations of nodes as sets of nodal coordinates. The tetrahedral shape of the element makes it suitable for modeling structures with complex shapes, and the small number of the degrees of freedom enables good performance and versatile application to problems of structural dynamics. The accuracy and convergence of the element were investigated using statics and dynamics benchmarks and a practical industry application.  相似文献   

14.
Nonlinear Dynamics - Gradient deficient beam elements (commonly known as cable elements in the literature) based on the absolute nodal coordinate formulation (ANCF) have great potential for...  相似文献   

15.
The focus of this investigation is to study the mechanics of the human knee using a new method that integrates multibody system and large deformation finite element algorithms. The major bones in the knee joint consisting of the femur, tibia, and fibula are modeled as rigid bodies. The ligaments structures are modeled using the large displacement finite element absolute nodal coordinate formulation (ANCF) with an implementation of a Neo-Hookean constitutive model that allows for large change in the configuration as experienced in knee flexion, extension, and rotation. The Neo-Hookean strain energy function used in this study takes into consideration the near incompressibility of the ligaments. The ANCF is used in the formulation of the algebraic equations that define the ligament/bone rigid connection. A unique feature of the ANCF model developed in this investigation is that it captures the deformation of the ligament cross section using structural finite elements such as beams. At the ligament/bone insertion site, the ANCF is used to define a fully constrained joint. This model will reflect the fact that the geometry, placement and attachment of the two collateral ligaments (the LCL and MCL), are significantly different from what has been used in most knee models developed in previous investigations. The approach described in this paper will provide a more realistic model of the knee and thus more applicable to future research studies on ligaments, muscles and soft tissues (LMST). Current finite element models are limited due to simplified assumptions for the spatial and time dependent material properties inherent in the anisotropic and anatomic constraints associated with joint stability, and the static conditions inherent in the analysis. The ANCF analysis is not limited to static conditions and results in a fully dynamic model that accounts for the distributed inertia and elasticity of the ligaments. The results obtained in this investigation show that the ANCF finite elements can be an effective tool for modeling very flexible structures like ligaments subjected to large flexion and extension. In the future, the more realistic ANCF models could assist in examining the mechanics of the knee to study knee injuries and possible prevention means, as well as an improved understanding of the role of each individual ligament in the diagnosis and assessment of disease states, aging and potential therapies.  相似文献   

16.
The Absolute Nodal Coordinate Formulation (ANCF) has been initiated in 1996 by Shabana (Computational Continuum Mechanics, 3rd edn., Cambridge: Cambridge University Press, 2008). It introduces large displacements of planar and spatial finite elements relative to the global reference frame without using any local frame. A sub-family of beam, plate and cable finite elements with large deformations are proposed and employed the 3D theory of continuum mechanics. In the ANCF, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This investigation concerns a way to generate new finite element in the ANCF for laminated composite plates. This formulation utilizes the assumption that the bonds between the laminae are thin and shear is non-deformable. Consequently, the Equivalent Single Layer, ESL model, is implemented. In the ESL models, the laminate is assumed to deform as a single layer, assuming a smooth variation of the displacement field across the thickness. In this paper, the coupled electromechanical effect of Piezoelectric Laminated Plate is imposed within the ANCF thin plate element, in such a way as to achieve the continuity of the gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Convergence and accuracy of the finite-element ANCF Piezoelectric Laminated Plate is demonstrated in geometrically nonlinear static and dynamic test problems, as well as in linear analysis of natural frequencies. The computer implementation and several numerical examples are presented in order to demonstrate the use of the formulation developed in this paper. A comparison with the commercial finite element package COMSOL MULTIPHYSICS () is carried out with an excellent agreement.  相似文献   

17.
Zheng  Yinhuan  Shabana  Ahmed A. 《Nonlinear dynamics》2017,87(2):1031-1043
Nonlinear Dynamics - It has been demonstrated recently that the absolute nodal coordinate formulation (ANCF) can be used to develop lower-order consistent rotation-based formulations (CRBFs) that...  相似文献   

18.
Nonlinear Dynamics - The absolute nodal coordinate formulation (ANCF) is a nonlinear finite element approach proposed for the large deformation dynamics analysis of beam- and plate/shell-type...  相似文献   

19.
Recent years have witnessed the application of topology optimization to flexible multibody systems (FMBS) so as to enhance their dynamic performances. In this study, an explicit topology optimization approach is proposed for an FMBS with variable-length bodies via the moving morphable components (MMC). Using the arbitrary Lagrangian–Eulerian (ALE) formulation, the thin plate elements of the absolute nodal coordinate formulation (ANCF) are used to describe the platelike bodies with variable length. For the thin plate element of ALE–ANCF, the elastic force and additional inertial force, as well as their Jacobians, are analytically deduced. In order to account for the variable design domain, the sets of equivalent static loads are reanalyzed by introducing the actual and virtual design domains so as to transform the topology optimization problem of dynamic response into a static one. Finally, the novel MMC-based topology optimization method is employed to solve the corresponding static topology optimization problem by explicitly evolving the shapes and orientations of a set of structural components. The effect of the minimum feature size on the optimization of an FMBS is studied. Three numerical examples are presented to validate the accuracy of the thin plate element of ALE–ANCF and the efficiency of the proposed topology optimization approach, respectively.  相似文献   

20.
Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The inter-nal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient con-tact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previ-ously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the pro-posed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号