首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method that uses liquid chromatography with tandem mass spectrometry (LC/MS/MS) has been developed for the highly sensitive and specific determination of amnesic shellfish poisoning toxins, diarrhetic shellfish poisoning toxins, and other lipophilic algal toxins and metabolites in shellfish. The method was subjected to a full single-laboratory validation and a limited interlaboratory study. Tissue homogenates are blended with methanol-water (9 + 1), and the centrifuged extract is cleaned up with a hexane wash. LC/MS/MS (triple quadrupole) is used for quantitative analysis with reversed-phase gradient elution (acidic buffer), electrospray ionization (positive and negative ion switching), and multiple-reaction monitoring. Ester forms of dinophysis toxins are detected as the parent toxins after hydrolysis of the methanolic extract. The method is quantitative for 6 key toxins when reference standards are available: azaspiracid-1 (AZA1), domoic acid (DA), gymnodimine (GYM), okadaic acid (OA), pectenotoxin-2 (PTX2), and yessotoxin (YTX). Relative response factors are used to estimate the concentrations of other toxins: azaspiracid-2 and -3 (AZA2 and AZA3), dinophysis toxin-1 and -2 (DTX1 and DTX2), other pectenotoxins (PTX1, PTX6, and PTX11), pectenotoxin secoacid metabolites (PTX2-SA and PTX11-SA) and their 7-epimers, spirolides, and homoYTX and YTX metabolites (45-OHYTX and carboxyYTX). Validation data have been gathered for Greenshell mussel, Pacific oyster, cockle, and scallop roe via fortification and natural contamination. For the 6 key toxins at fortification levels of 0.05-0.20 mg/kg, recoveries were 71-99% and single laboratory reproducibilities, relative standard deviations (RSDs), were 10-24%. Limits of detection were <0.02 mg/kg. Extractability data were also obtained for several toxins by using successive extractions of naturally contaminated mussel samples. A preliminary interlaboratory study was conducted with a set of toxin standards and 4 mussel extracts. The data sets from 8 laboratories for the 6 key toxins plus DTX1 and DTX2 gave within-laboratories repeatability (RSD(R)) of 8-12%, except for PTX-2. Between-laboratories reproducibility (RSDR) values were compared with the Horwitz criterion and ranged from good to adequate for 7 key toxins (HorRat values of 0.8-2.0).  相似文献   

2.
A rapid multiple toxin method based on liquid chromatography with mass spectrometry (LC/MS) was developed for the detection of okadaic acid (OA), dinophysistoxin-1 (DTX-1), DTX-2, yessotoxin (YTX), homoYTX, 45-hydroxy-YTX, 45-hydroxyhomo-YTX, pectenotoxin-1 (PTX-1), PTX-2, azaspiracid-1 (AZA-1), AZA-2, and AZA-3. Toxins were extracted from shellfish using methanol-water (80%, v/v) and were analyzed using a C8 reversed-phase column with a 5 mM ammonium acetate-acetonitrile mobile phase under gradient conditions. The method was validated for the quantitative detection of OA, YTX, PTX-2, and AZA-1 in 4 species (mussels, Mytilus edulis; cockles, Cerastoderma edule; oysters, Crassostrea gigas; king scallop, Pecten maximus) of shellfish obtained from United Kingdom (UK) waters. Matrix interferences in the determination of the toxins in these species were investigated. The validated linear range of the method was 13-250 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. Recovery and precision ranged between 72-120 and 1-22%, respectively, over a fortification range of 40-160 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. The limit of detection, reproducibility, and repeatability of analysis showed acceptable performance characteristics. A further LC/MS method using an alkaline hydrolysis step was assessed for the detection of OA, DTX-1, and DTX-2 in their esterified forms. In combination with the LC/MS multiple toxin method, this allows detection of all toxin groups described in Commission Decision 2002/225/EC.  相似文献   

3.
Determination of diarrhetic shellfish-poisoning (DSP) toxins, okadaic acid (OA), dinophysistoxin-1 (DTX1) and pectenotoxin-6 (PTX6) was carried out by liquid chromatography (LC) followed by on-line atmospheric pressure electrospray ionization-mass spectrometric (ESI-MS) detection with a heated capillary interface. Mass spectra of authentic OA, DTXI and PTX6 standards exhibited abundant [M-H] at m/z 803, 817 and 887, respectively. Linearity of peak area obtained by selected-ion monitoring (SIM) for [M-H]- of each toxin was confirmed over a wide range of concentrations from 10 pg to 30 ng. LC-ESI-MS analysis of OA, DTX1 and PTX6 in scallops and mussels, collected at the same site (Mutsu Bay, Japan), was carried out. Scallops and mussels collected at the same site showed different toxin profiles. Although PTX6 was detected from scallops, it was not detected from mussels.  相似文献   

4.
Guo M  Tan Z  Wu H  Li Z  Zhai Y 《色谱》2012,30(3):256-261
建立了同时测定贝类中大田软海绵酸(okadaic acid, OA)及其衍生物鳍藻毒素(dinophysistoxin-1, DTX-1)、蛤毒素(pectenotoxin-2, PTX-2)和虾夷扇贝毒素(yessotoxin, YTX)的液相色谱-串联质谱分析方法。样品经甲醇提取,固相萃取柱净化,C18色谱柱分离,经含甲酸和甲酸铵的乙腈-水溶液为流动相梯度洗脱,选择反应监测(SRM)模式检测,正、负离子切换扫描,基质标准校正,外标法定量。结果表明,OA、DTX-1和YTX的线性范围为2.0~200.0 μg/L,定量限(以信噪比(S/N)≥10计)为1.0 μg/kg; PTX-2的线性范围为1.0~100.0 μg/L,定量限为0.5 μg/kg;几种化合物的添加平均回收率为83.1%~105.7%,相对标准偏差(RSD)为3.16%~9.29%。成功应用本法对黄海灵山湾海域采集的贝类样品进行了分析,发现部分样品中含有大田软海绵酸、鳍藻毒素、蛤毒素和虾夷扇贝毒素。  相似文献   

5.
The performances of four different mass spectrometers [triple-quadrupole (TQ), time-of-flight (ToF), quadrupole ToF (Q-ToF) and ion trap (IT)] for the detection of the marine lipophilic toxins pectenotoxin-2 (PTX2) and okadaic acid (OA) were investigated. The spectral data obtained with the different mass spectrometric analyzers were used to propose fragmentation schemes for PTX2 in the positive electrospray mode and for OA in the negative electrospray mode. TQ data were used to obtain product ions, while ToF and Q-ToF-MS produced accurate mass data of the precursor ion and product ions, respectively. IT data provided a better understanding of the fragmentation pathways using MS(n) experiments. With respect to analytical performance, all four mass analyzers showed a good linearity (R(2) > 0.97) and repeatability (CV < 20%). Detection limits (LoDs) (S/N = 3) were the lowest on triple-quad MS: 12.2 and 2.9 pg on-column for PTX2 and OA, respectively.  相似文献   

6.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2021,39(4):399-405
生物样品中脂溶性贝类毒素的检测,可为食物中毒等突发公共卫生事件的流行病学调查以及中毒者的临床救治提供技术支持。目前的研究存在目标化合物少,以及方法前处理复杂、灵敏度低等问题。该研究通过优化前处理和色谱分离技术,建立了超高效液相色谱-串联质谱法测定血浆、尿液中12种脂溶性贝类毒素的方法。实验对提取试剂以及流动相的选择进行了优化,采用乙腈对尿液和血浆样品进行提取。采用Phenomenex Kinetex C18色谱柱(50 mm×3 mm, 2.6 μm)进行分离,以0.05%(v/v)氨水水溶液、90%(v/v)乙腈水溶液为流动相,以流速0.40 mL/min梯度洗脱时,12种目标化合物分离效果最好。串联质谱的离子源为电喷雾离子(ESI)源,采用多反应监测(MRM)模式检测。12种目标物的基质效应均在0.8~1.1之间,表明该前处理方法的基质干扰低,采用外标法可对化合物进行准确定量。12种贝类毒素的线性范围为0.03~36.25 μg/L,相关系数均大于0.995。尿液检测的方法定量限为0.23~0.63 μg/L,血浆检测的方法定量限为0.31~0.84 μg/L。3个加标水平的回收率为72.7%~124.1%,日内精密度为2.1%~20.0%,日间精密度为2.1%~15.3%。利用该方法检测健康人尿液和血浆样本,以及经腹腔注射12种贝类毒素的小鼠尿液和血液样本。20份健康人样本中未检出目标物,20份小鼠样本中12种贝类毒素均有检出。该方法操作简便,样品取样量少,方法灵敏高,适用于血浆和尿液中脂溶性贝类毒素的快速检测。  相似文献   

7.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of lipophilic marine toxins in shellfish extracts (mussel, oyster, cockle and clam) was validated in-house using European Union (EU) Commission Decision 2002/657/EC as a guideline. The validation included the toxins okadaic acid (OA), yessotoxin (YTX), azaspiracid-1 (AZA1), pectenotoxin-2 (PTX2) and 13-desmethyl spirolide-C (SPX1). Validation was performed at 0.5, 1 and 1.5 times the current EU permitted levels, which are 160 μg kg-1 for OA, AZA1 and PTX2 and 1,000 μg kg-1 for YTX. For SPX1, 400 μg kg-1 was chosen as the target level as no legislation has been established yet for this compound. The method was validated for determination in crude methanolic shellfish extracts and for extracts purified by solid-phase extraction (SPE). Extracts were also subjected to hydrolysis conditions to determine the performance of the method for OA and dinophysistoxin esters. The toxins were quantified against a set of matrix-matched standards instead of standard solutions in methanol. To save valuable standard, methanolic extract instead of the homogenate was spiked with the toxin standard. This was justified by the fact that the extraction efficiency is high for all relevant toxins (above 90%). The method performed very well with respect to accuracy, intraday precision (repeatability), interday precision (within-laboratory reproducibility), linearity, decision limit, specificity and ruggedness. At the permitted level the accuracy ranged from 102 to 111%, the repeatability from 2.6 to 6.7% and the reproducibility from 4.7 to 14.2% in crude methanolic extracts. The crude extracts performed less satisfactorily with respect to the linearity (less than 0.990) and the change in LC-MS/MS sensitivity during the series (more than 25%). SPE purification resulted in greatly improved linearity and signal stability during the series. Recently the European Food Safety Authority (EFSA) has suggested that to not exceed the acute reference dose the levels should be below 45 μg kg-1 OA equivalents and 30 μg kg-1 AZA1 equivalents. A single-day validation was successfully conducted at these levels. If the regulatory levels are lowered towards the EFSA suggested values, the official methods prescribed in legislation (mouse and rat bioassay) will no longer be sensitive enough. The validated LC-MS/MS method presented has the potential to replace these animal tests.  相似文献   

8.
Successive unexplained shellfish toxicity events have been observed in Arcachon Bay (Atlantic coast, France) since 2005. The positive mouse bioassay (MBA) revealing atypical toxicity did not match the phytoplankton observations or the liquid chromatography-tandem mass spectrometry (LC-MS/MS) investigations used to detect some known lipophilic toxins in shellfish. The use of the three cell lines (Caco2, HepG2, and Neuro2a) allows detection of azaspiracid-1 (AZA1), okadaic acid (OA), or pectenotoxin-2 (PTX2). In this study, we proposed the cell-based assays (CBA) as complementary tools for collecting toxicity data about atypical positive MBA shellfish extracts and tracking their chromatographic fractionation in order to identify toxic compound(s). The present study was intended to investigate the responses of these cell lines to shellfish extracts, which were either control or spiked with AZA1, OA, or PTX2 used as positive controls. Digestive glands of control shellfish were extracted using the procedure of the standard MBA for lipophilic toxins and then tested for their cytotoxic effects in CBA. The same screening strategy previously used with pure lipophilic toxins was conducted for determining the intra- and inter-laboratory variabilities of the responses. Cytotoxicity was induced by control shellfish extracts whatever the cell line used and regardless of the geographical origin of the extracts. Even though the control shellfish extracts demonstrated some toxic effects on the selected cell lines, the extracts spiked with the selected lipophilic toxins were significantly more toxic than the control ones. This study is a crucial step for supporting that cell-based assays can contribute to the detection of the toxic compound(s) responsible for the atypical toxicity observed in Arcachon Bay, and which could also occur at other coastal areas.  相似文献   

9.
The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function SPE sorbents was tested. Polymeric sorbents were found to retain most of the toxins. Optimization experiments were carried out to maximize recoveries and the effectiveness of the clean-up. In LC–MS/MS analysis, the observed matrix effects can depend on the chromatographic conditions used, therefore, two different HPLC methods were tested, using either an acidic or an alkaline mobile phase. The recovery of the optimized SPE protocol was around 90% for all toxins studied and no break-through was observed. The matrix effects were determined by comparing signal response from toxins spiked in crude and SPE-cleaned extracts with those derived from toxins prepared in methanol. In crude extracts, all toxins suffered from matrix effects, although in varying amounts. The most serious effects were observed for okadaic acid (OA) and pectenotoxin-2 (PTX2) in the positive electrospray ionization mode (ESI+). SPE clean-up on polymeric sorbents in combination with the alkaline LC method resulted in a substantial reduction of matrix effects to less than 15% (apparent recovery between 85 and 115%) for OA, yessotoxin (YTX) in ESI and azaspiracid-1 (AZA1), PTX2, 13-desmethyl spirolides C (SPX1), and gymnodimine (GYM) in ESI+. In combination with the acidic LC method, the matrix effects after SPE were also reduced but nevertheless approximately 30% of the matrix effects remained for PTX2, SPX1, and GYM in ESI+. It was concluded that SPE of methanolic shellfish extracts can be very useful for reduction of matrix effects. However, the type of LC and MS methods used is also of great importance. SPE on polymeric sorbents in combination with LC under alkaline conditions was found the most effective method.  相似文献   

10.
Marine algal toxins of the okadaic acid group can occur as fatty acid esters in blue mussels, and are commonly determined indirectly by transformation to their parent toxins by alkaline hydrolysis. Some data are available regarding the identity of the fatty acid esters, mainly of palmitic acid (16:0) derivatives of okadaic acid (OA), dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2). Other fatty acid derivatives have been described, but with limited mass spectral data. In this paper, the mass spectral characterization of the [M-H](-) and [M+Na](+) ions of 16 fatty acid derivatives of each of OA, DTX1 and DTX2 is presented. The characteristic fragmentation of [M+Na](+) ions of OA analogues provided a useful tool for identifying these, and has not been described previously. In addition, a set of negative ion multiple reaction monitoring (MRM) methods was developed for direct determination of 16 fatty acid esters of OA, 16 fatty acid esters of DTX1 and 16 fatty acid esters of DTX2 in shellfish extracts. The MRM methods were employed to study the profiles of fatty acid esters of OA analogues in blue mussels and to compare these with fatty acid ester profiles reported for other groups of marine algal toxins.  相似文献   

11.
Okadaic acid (OA) and dinophysistoxins-1 and -2 (DTX1, DTX2), the toxins responsible for incidents of diarrhetic shellfish poisoning (DSP), can occur as complex mixtures of ester derivatives in both plankton and shellfish. Alkaline hydrolysis is usually employed to release parent OA/DTX toxins, and analyses are conducted before and after hydrolysis to determine the concentrations of nonesterified and esterified toxins. Recent research has shown that other toxins, including pectenotoxins and spirolides, can also exist as esters in shellfish, but these toxins cannot survive alkaline hydrolysis. A promising alternative approach is enzymatic hydrolysis. In this study, two enzymatic methods were developed for the hydrolysis of 7-O-acyl esters, “DTX3,” and the carboxylate esters of OA, “diol-esters.” Porcine pancreatic lipase induced complete conversion of DTX3 to OA and DTXs within one hour for reference solutions. The presence of mussel tissue matrix reduced the rate of hydrolysis, but an optimized lipase concentration resulted in greater than 95% conversion within four hours. OA-diol-ester was hydrolyzed by porcine liver esterase and was completely converted to OA in less than 30 min, even in the presence of mussel tissue matrix. Esters and OA/DTX toxins were all monitored by LC–MS. Further experiments with pectenotoxin esters indicated that enzymatic hydrolysis could also be applied to esters of other toxins. Enzymatic hydrolysis has excellent potential as an alternative to the conventional alkaline hydrolysis procedure used in the preparation of shellfish samples for the analysis of toxins.  相似文献   

12.
A method for the analysis of six alkyl organoiodides (iodomethane, iodoethane, 1-iodopropane, 1-iodobutane, 1-iodopentane, 1-iodohexane) commonly found in acetic acid process was developed. In this method the target analytes were determined by high-performance liquid chromatography (HPLC) using a post-column photochemical reactor with electrochemical detection (ED) in less than 30 min. HPLC was performed in ODS C18 reversed-phase column (5 microm, 250 x 4.6 mm I.D.) under isocratic conditions with methanol-0.067 M acetate buffer (70:30, v/v), pH 6.2 as mobile phase at flow-rate 1.1 ml/min. Alkyl organoiodides, which are electrochemically inactive, were made oxidizable at potential of 120 mV after post-column irradiation with low-pressure mercury lamp in a knitted PTFE tube. The photoreactor was placedin an aluminum housing full of nitrogen in order to prevent from the interference of oxygen. The detection limit for most analytes was of the order of 1-2 microg/l. The HPLC-ED method with a post-column photochemical reactor has good precision and linearity and can be readily applied to the routine determination of alkyl organoiodides in real acetic acid samples.  相似文献   

13.
建立了液相色谱-串联质谱分析贝类组织中米氏裸甲藻(GYM)贝毒素、螺环内酯毒素(SPX1)、大田软骨酸(OA)贝毒素、蛤毒素(PTX2)、原多甲藻酸(AZA1)贝毒素的方法.用甲醇-水(4: 1, V/V)溶液对贝类组织中GYM, SPX1, OA, PTX2和AZA1进行提取,MAX阴离子交换柱净化后,采用液相色谱分离,除OA以负离子选择反应监测外,GYM, SPX1, PTX2和AZA1以电喷雾离子源正离子选择反应监测模式进行质谱分析.5种脂溶性贝毒素GYM, SPX1, OA, PTX2和AZA1在各自相应浓度范围内线性良好,相关系数>0.99.扇贝闭壳肌空白样品添加5种贝毒素的提取率均为78.6%~94.4%(n=6); 精密度(RSD)为6.8%~14.9%.贝类组织中5种贝毒素GYM, SPX1, OA, PTX2和AZA1的检出限分别为0.10, 0.21, 2.00, 0.32和0.04 μg/kg.  相似文献   

14.
A high-performance liquid chromatographic (HPLC) method and a cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method were developed to separate and determine oleanolic acid (OA) and ursolic acid (UA) in Prunella vulgaris. HPLC separations were carried out on a Hedera ODS C18 column with methanol -H2O- acetic acid (85:15:0.3, v/v/v) as mobile phase at a flow-rate of 0.8 ml min?1. CD-MEKC analysis was performed on a CL1030 capillary electrophoresis system with a 6% (v/v) methanol solution (pH = 9.0) containing 10 mM disodium tetraborate, 10 mM sodium dihydrogen phosphate, 50 mM sodium dodecylsulfate (SDS), 15 mM 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD) as background electrolyte. The analytical results of HPLC and CD-MEKC were compared with each other. CD-MEKC has better analytical efficiency for two components, and the analytical time (15 min) was shorter than that of HPLC (35 min).  相似文献   

15.
A simultaneous determination of aspirin (ASA) and its metabolite, salicylic acid (SA), in human serum by a semi-micro column HPLC-UV was developed. A relatively small size of serum sample (100 microL) containing ASA and SA was cleaned up by a simple solid phase extraction. A good separation of ASA and SA could be achieved within 25 min using a semi-micro ODS column with an eluent of MeOH/0.7 mm phosphoric acid solution (pH 2.5) = 50:50 (v/v). The calibration curves for ASA and SA showed good linearity (r = 0.999) with the detection limits 114 and 38 ng/mL at a signal-to-noise ratio of 3, respectively. ASA and SA in patients' sera administered with low-dose enteric-coated aspirin were determined, and the concentration ranges obtained for ASA and SA were 1.2-2.2 and 0.5-57.3 microg/mL, respectively.  相似文献   

16.
A sensitive HPLC/ESIMS method was established for the determination of manidipine in human plasma and pharmacokinetics study. After basified plasma with ammonia, manidipine and the internal standard (IS) (felodipine) were extracted with n-hexane and separated on a Hypersil ODS2 column with a mobile phase of methanol-5 mm ammonium acetate solution containing 0.1% acetic acid (85:15, v/v). MS determination was performed by electrospray ionization in the selected ion monitoring mode. Manidipine was monitored at m/z 611.4 and IS at m/z 384. The assay had a calibration range from 0.2 to 20 ng/mL and a lower limit of quantification of 0.1 ng/mL. The method has been successfully applied to the pharmacokinetic study in healthy volunteers.  相似文献   

17.
Studies of yessotoxin involving confirmation of fragmentation processes using a high-resolution orthogonal hybrid quadrupole time-of-flight (QqTOF) mass spectrometer and nanoLC hybrid quadrupole TOF MS have been undertaken. The fragmentation of YTX was studied in negative mode using nano electrospray (nanoESI) QqTOF mass spectrometry. Three major molecule-related ions were observed, [M - 2Na + H]-, [M - Na]- and [M - 2Na]2-, and fragmentation of the latter was studied in detail. This showed that product ions were formed as a consequence of charge-remote fragmentation processes that included a strong directional cleavage of the polyether rings of YTX. NanoLC coupled with QqTOF MS was used to determine YTX in small samples of the phytoplankton, Protoceratium reticulatum, by monitoring the [M - 2Na]2- ion at m/z 570. A PepMap C18 nanoLC column (75 microm x 10 cm, 100 A, 3 microm, LC Packings) was used and the solvent was acetonitrile/water (90:10 (v/v)) containing 1 mM ammonium acetate, at a flow rate of 400 nl/min, for 30 min. Calibrations obtained with YTX standard solutions were linear over four orders of magnitude, 0.75-250 ng/ml; r2 = 0.9947-0.9998. Phytoplankton cells (ca. 100-300) were picked, extracted with methanol/water (40:60), and the YTX concentration was determined over the range 0.011-0.020 ng/cell. The detection limit (3 x S/N) of this method was ca. 0.5 pg YTX on-column.  相似文献   

18.
Most liquid chromatography (LC) mass spectrometric (MS) methods used for routine monitoring of lipophilic marine toxins focus on the analysis of the 13 toxins that are stated in European Union legislation. However, to date over 200 lipophilic marine toxins have been described in the literature. To fill this gap, a screening method using LC coupled to high resolution (HR) orbitrap MS (resolution 100 000) for marine lipophilic toxins has been developed. The method can detect a wide variety of okadaic acid (OA), yessotoxin (YTX), azaspiracid (AZA) and pectenotoxin (PTX) group toxins. To build a library of toxins, shellfish and algae samples with various toxin profiles were obtained from Norway, Ireland, United Kingdom, Portugal and Italy. Each sample extract was analyzed with and without collision induced dissociation fragmentation. Based on their mass and specific fragmentation pattern, 85 different toxins were identified comprising 33 OA, 26 YTX, 18 AZA and 8 PTX group toxins. A major complication of full scan HRMS is the huge amount of data generated (file size), which restricts the possibility of a fast search. A software program called metAlign was used to reduce the orbitrap MS data files. The 200-fold reduced data files were screened using an additional software tool for metAlign: ‘Search_LCMS’. A search library was constructed for the 85 identified toxins. The library contains information about compound name, accurate mass, mass deviation (<5 ppm), retention time (min) and retention time deviation (<0.2 min). An important feature is that the library can easily be exchanged with other instruments as the generated metAlign files are not brand-specific. The developed screening procedure was tested by analyzing a set of known positive and blank samples, processing them with metAlign and searching with Search_LCMS. A toxin profile was determined for each of the contaminated samples. No toxins were found in the blank sample, which is in line with the results obtained for this sample in the routine monitoring program (rat bioassay and tandem LC–MS).  相似文献   

19.
A high-performance liquid chromatographic method was developed for the determination of the non-glycosidic anthraquinones alizarin (1,2-dihydroxy-9,10-anthracenedione), emodin (1,3,8-trihydroxy-6-methyl-9,10-anthracenedione) and anthraquinone (9,10-anthracenedione). The anthraquinones were separated by isocratic elution on a 125 × 4.6 mm I.D. column containing ODS Hypersil 5 reversed-phase material using methanol-5% acetic acid (pH 3.0) (70:30) as the mobile phase. Free alizarin was determined in plant cell suspension cultures of Rubia tinctorum and free emodin in mushrooms (Dermocybe sanguinea). The effective extraction of anthraquinones from plant cells was achieved with 80% (v/v) ethanol after incubation for 10 h at 80°C. Prepurification and concentration of anthraquinones in the plant cell and mushroom extracts were effected by a solid-phase technique using C8 cartridges.  相似文献   

20.
An LC/MS/MS method has been developed, assessed, and intralaboratory-validated for the analysis of the lipophilic toxins currently regulated by European Union legislation: okadaic acid (OA) and dinophysistoxins 1 and 2, including their ester forms; azaspiracids 1, 2, and 3; pectenotoxins 1 and 2; yessotoxin (YTX), and the analogs 45 OH-YTX, Homo YTX, and 45 OH-Homo YTX; as well as for the analysis of 13-desmetil-spirolide C. The method consists of duplicate sample extraction with methanol and direct analysis of the crude extract without further cleanup or concentration. Ester forms of OA and dinophysistoxins are detected as the parent ions after alkaline hydrolysis of the extract. The validation process of this method was performed using both fortified and naturally contaminated samples, and experiments were designed according to International Organization for Standardization, International Union of Pure and Applied Chemistry, and AOAC guidelines. With the exception of YTX in fortified samples, RSDr below 15% and RSDR were below 25%. Recovery values were between 77 and 95%, and LOQs were below 60 microg/kg. These data together with validation experiments for recovery, selectivity, robustness, traceability, and linearity, as well as uncertainty calculations, are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号