首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FK-228 is a potent histone deacetylase (HDAC) inhibitor with tremendous therapeutic potential against a wide array of human cancers. We describe the development of analogs that share FK-228’s novel mechanism of activation and HDAC inhibition.  相似文献   

2.
[reaction: see text] Amamistatins A and B are natural products found to have anti-proliferative effects against MCF-7, A549, and MKN45 human tumor cell lines (IC50 0.24-0.56 microM). It was proposed that their activity was due to histone deacetylase (HDAC) inhibition mediated by the N-formyl-N-hydroxy lysine moiety. Amamistatin B fragment analogs were synthesized and screened for biological activity. These compounds were modest HDAC inhibitors and showed antitumor activity against MCF-7 and PC-3 human tumor cells.  相似文献   

3.
Suberoyl bis-hydroxamic acid (SBHA), a histone deacetylase (HDAC) inhibitor, led to significant changes in the secondary metabolism of an entomopathogenic fungus, Torrubiella luteorostrata, and induced the production of three new prenylated tryptophan analogs, luteorides A-C (1-3). The structures are characterized by the presence of an (E)-oxime group, which is an unusual functional group in natural products, and a 3-methylbuta-1,3-dienyl unit as a common substituent. The method of culturing entomopathogenic fungi in the presence of HDAC inhibitors, such as SBHA, is convenient and attractive for obtaining novel secondary metabolites.  相似文献   

4.
Syntheses and biological activity of amamistatin B and analogs   总被引:1,自引:0,他引:1  
Amamistatins A and B, natural products isolated from a strain of Nocardia, showed growth inhibition against three human tumor cell lines (IC(50) 0.24-0.56 microM). Structurally related mycobactins affect the growth of both mycobacterial and human cells through interference with iron chelation. To further probe the biological activity of this class of compounds, the total syntheses of amamistatin B and two analogs were completed, and the synthetic samples were screened for tumor cell growth inhibition, HDAC inhibition, and Mycobacterium tuberculosis growth inhibition. Amamistatin B (15) and diastereomer 18 were both active against MCF-7 cells (IC(50) 0.12-0.20 microM), and less so against PC-3 cells (IC(50) 8-13 microM). Amamistatin B only moderately inhibited the growth of M. tuberculosis (MIC 47 microM) but showed growth promotion of Mycobacterium smegmatis and other bacteria.  相似文献   

5.
Histone deacetylases (HDACs) are key regulators of gene expression and have emerged as crucial therapeutic targets for cancer. Among the HDACs, inhibition of HDAC8 enzyme has been reported to be a novel strategy in the treatment of female-specific cancers. Most of the HDAC inhibitors discovered so far inhibit multiple HDAC isoforms causing toxicities in the clinic thus limiting their potential. Therefore, the discovery of isoform-selective HDAC8 inhibitors is highly desirable. In the present study, a combination of ligand and structure based drug design tools were utilized to build a statistically significant pharmacophore based 3D QSAR model with statistical parameters R2: 0.9964, and Q2: 0.7154, from a series of 31 known HDAC8 inhibitors. Top 1000 hits obtained from Virtual screening of Phase database were subjected to docking studies against HDAC8. Top 100 hits obtained were redocked into HDAC Class I (HDAC 1,2,3) and Class II isoforms (HDAC 4, 6) and rescored with XP Glide Score. Based on fitness score, XP glide score and interacting amino acid residues, five HDAC8 inhibitors (15) were selected for in vitro studies. The HDAC8 activity assay followed by enzyme kinetics clearly indicated Compounds 1, 2 and 3 to be potent HDAC8 selective inhibitors with IC50 of 126 pM, 112 nM, and 442 nM respectively. These compounds were cytotoxic to HeLa cells where HDAC8 is overexpressed but not to normal cells, HEK293. Also, they were able to induce apoptosis by modulating Bax/Bcl2, cleavage of PARP and release of Cytochrome C. Molecular Dynamics simulations observed most favorable interaction patterns and presented a rationale for the activities of the identified compounds. Selectivity against HDAC8 was due to exploitation of the architectural difference in the acetate release channel among class I HDAC isoforms.  相似文献   

6.
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.  相似文献   

7.
组蛋白去乙酰化酶(HDACs)是近年来治疗肿瘤的重要靶标之一.由于HDACs包含多种亚型,且各亚型的生理功能存在一定的差异,其选择性抑制剂的开发已成为当前的研发热点.我们通过同源模建的HDAC1结构,与已有的HDAC8晶体结构的活性位点进行比较分析,探讨了对两者选择性有重要影响的残基,为基于受体的选择性抑制剂研究提供重要信息.同时选择了52个HDAC抑制剂,分别建立了HDAC1、HDAC8的活性值与对接打分值的线性回归模型.所建的HDAC1和HDAC8的线性构效关系模型的非交叉验证系数R2分别为0.82和0.80,表明具有一定的统计学意义.利用所建模型对已设计合成的化合物进行了预测,预测结果对HDAC1、HDAC8选择性抑制剂的优化改造提供了一定的指导意义.  相似文献   

8.
组蛋白去乙酰化酶(HDAC)对染色质分布和基因调节起着重要的作用,也是治疗癌症和其它疾病的新靶点.羟肟酸类抑制剂是目前研究最多的组蛋白去乙酰化酶抑制剂.应用比较分子力场(CoMFA)法对一系列磺胺基羟肟酸类HDAC抑制剂进行了结构活性关系研究,得到的模型具有较高的交叉验证系数(q2=0.704).并在此基础上,建立了非交叉验证的偏最小二乘分析(PLS)模型.用该模型对随机选择的6个化合物组成的测试集进行了预测,得到了令人满意的结果,所建模型具有良好的预测能力.本研究对于设计高活性的HDAC抑制剂及抗癌药物都有指导意义.  相似文献   

9.
10.
11.
采用模拟方法研究组蛋白脱乙酰酶抑制剂(Apicidin)选择性抑制组蛋白去乙酰化酶(Histone deacetylases, HDACs)中的HDAC1和HDAC8. 通过HDAC8晶体结构同源模建HDAC1三维结构模型, 将Apicidin分别与HDAC1和HDAC8对接并进行分子动力学模拟, 结果表明, HDAC1活性口袋入口处的Arg270是Apicidin-HDAC1形成稳定结构的重要因素; HDAC1中Tyr303及His178与Apicidin形成2个持续存在的氢键, 而在HDAC8中未发现, 这是Apicidin选择性抑制HDAC1高于HDAC8的另一重要原因.  相似文献   

12.
It is of significant biological interest and medical importance to develop class- and isoform-selective histone deacetylase (HDAC) modulators. The impact of the linker component on HDAC inhibition specificity has been revealed but is not understood. Using Born-Oppenheimer ab initio QM/MM MD simulations, a state-of-the-art approach to simulating metallo-enzymes, we have found that the hydroxamic acid remains to be protonated upon its binding to HDAC8, and thus disproved the mechanistic hypothesis that the distinct zinc-hydroxamate chelation modes between two HDAC subclasses come from different protonation states of the hydroxamic acid. Instead, our simulations suggest a novel mechanism in which the chelation mode of hydroxamate with the zinc ion in HDACs is modulated by water access to the linker binding channel. This new insight into the interplay between the linker binding and the zinc chelation emphasizes its importance and gives guidance regarding linker design for the development of new class-IIa-specific HDAC inhibitors.  相似文献   

13.
Histone deacetylase (HDAC) is a major class of deacetylation enzymes. Many HDACs exist in large protein complexes in cells and their functions strongly depend on the complex composition. The identification of HDAC‐associated proteins is highly important in understanding their molecular mechanisms. Although affinity probes have been developed to study HDACs, they were mostly targeting the direct binder HDAC, while other proteins in the complex remain underexplored. We report a DNA‐based affinity labeling method capable of presenting different probe configurations without the need for preparing multiple probes. Using one binding probe, 9 probe configurations were created to profile HDAC complexes. Notably, this method identified indirect HDAC binders that may be inaccessible to traditional affinity probes, and it also revealed new biological implications for HDAC‐associated proteins. This study provided a simple and broadly applicable method for characterizing protein‐protein interactions.  相似文献   

14.
Histone deacetylases (HDACs) regulate the function and activity of numerous cellular proteins by removing acetylation marks from regulatory lysine residues. We have developed peptide‐based HDAC probes that contain hydroxamate amino acids of various lengths to replace modified lysine residues in the context of known acetylation sites. The interaction profiles of all human HDACs were studied with three sets of probes, which derived from different acetylation sites, and sequence context was found to have a strong impact on substrate recognition and composition of HDAC complexes. By investigating K382 acetylation of the tumor suppressor p53 as an example, we further demonstrate that the interaction profiles reflect the catalytic activities of respective HDACs. These results underline the utility of the newly established probes for deciphering not only activity, but also substrate selectivity and composition of endogenous HDAC complexes, which can hardly be achieved otherwise.  相似文献   

15.
16.
A series of thiol-based indeno[1,2-c]pyrazoles and benzoindazole compounds was designed and synthesized according to the structural specificity of histone deacetylase VI(HDAC6) and the structural characteristics of HDAC inhibitors. The inhibitory activities of the target compounds against HDAC6 and HDAC1 were screened by fluorescence analysis. Most of the target compounds showed moderate inhibitory activity against HDAC6(IC50=44—598 nmol/L). Among them, compound A-4 displayed the highest selectivity against HDAC6 and similar inhibitory activity(IC50=44 nmol/L) to that of the positive drug SAHA(IC50=41 nmol/L) against HDAC6.  相似文献   

17.
A new series of largazole analogues in which the side chain was replaced with disulfide groups were synthesized, and their biological activities were evaluated. Compound 8 bearing an octyl moiety showed much better selectivity for HDAC1 over HDAC7 than largazole (320-fold). Structure–activity relationships suggested that the length in the disulfide chain of largazole is important for the selectivity toward HDAC1 over HDAC7.  相似文献   

18.
Histone deacetylases (HDACs) are key enzymatic regulators of the epigenome and serve as promising targets for anticancer therapeutics. Recently, we developed a photoreactive "clickable" probe, SAHA-BPyne, to report on HDAC activity and complex formation in native biological systems. Here, we investigate the selectivity, sensitivity, and inhibitory properties of SAHA-BPyne and related potential activity-based probes for HDACs. While we identified several probes that are potent HDAC inhibitors and label HDAC complex components in native proteomic preparations, SAHA-BPyne was markedly superior for profiling HDAC activities in live cells. Interestingly, the enhanced performance of SAHA-BPyne as an in situ activity-based probe could not be solely ascribed to potency in HDAC binding, implying that other features of the molecule were key to efficient active site-directed labeling in living systems. Finally, we demonstrate the value of in situ profiling of HDACs by comparing the activity and expression of HDAC1 in cancer cells treated with the cytotoxic agent parthenolide. These results underscore the utility of activity-based protein profiling for studying HDAC function and may provide insight for the future development of click chemistry-based photoreactive probes for the in situ analysis of additional enzyme activities.  相似文献   

19.
Cytokine-induced beta-cell apoptosis is important to the etiology of type-1 diabetes. Although previous reports have shown that general inhibitors of histone deacetylase (HDAC) activity, such as suberoylanilide hydroxamic acid and trichostatin A, can partially prevent beta-cell death, they do not fully restore beta-cell function. To understand HDAC isoform selectivity in beta cells, we measured the cellular effects of 11 structurally diverse HDAC inhibitors on cytokine-induced apoptosis in the rat INS-1E cell line. All 11 compounds restored ATP levels and reduced nitrite secretion. However, caspase-3 activity was reduced only by MS-275 and CI-994, both of which target HDAC1, 2, and 3. Importantly, both MS-275 and genetic knockdown of Hdac3 alone were sufficient to restore glucose-stimulated insulin secretion in the presence of cytokines. These results suggest that HDAC3-selective inhibitors may be effective in preventing cytokine-induced beta-cell apoptosis.  相似文献   

20.
Checkpoint kinase 1 (Chk1) and Chk2 are effector kinases in the cellular DNA damage response and impairment of their function is closely related to tumorigenesis. Previous studies revealed several substrate proteins of Chk1 and Chk2, but identification of additional targets is still important in order to understand their tumor suppressor functions. In this study, we screened novel substrates for Chk1 and Chk2 using substrate target motifs determined previously by an oriented peptide library approach. The potential candidates were selected by genome-wide peptide database searches and were examined by in vitro kinase assays. ST5, HDAC5, PGC-1alpha, PP2A PR130, FANCG, GATA3, cyclin G, Rad51D and MAD1a were newly identified as in vitro substrates for Chk1 and/or Chk2. Among these, HDAC5 and PGC-1a were further analyzed to substantiate the screening results. Immunoprecipitation kinase assay of full-length proteins and site-directed mutagenesis analysis of the target motifs demonstrated that HDAC5 and PGC-1alpha were specific targets for Chk1 and/or Chk2 at least in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号