首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
《Electroanalysis》2005,17(9):789-793
The paper describes the results of the studies of organic substances catalytic activity on Zn(II) ions electroreduction on mercury in perchlorate solutions. Zn(II) ions electroreduction in the presence of catalyzing substance proceeds in two one‐electron stages. The first electron transfer is the stage determining the process rate. All catalyzing substances increase the rate of first electron transfer. The acceleration effect is connected with the stability of active complexes formed on the electrode surface. The rate of the second electron transfer depends mainly on the adsorption of the catalyzing substance on the electrode surface – of the surface excess and the structure of the adsorption layer. Hence the second electron transfer can be inhibited or catalyzed. The mechanism of the organic substance catalytic activity is also given.  相似文献   

2.
We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells.
Graphical Abstract
Two types of glucose oxidase (GOx) are immobilized on the surface of multi-walled carbon nanotubes (MWCNTs)-modified electrode. DET (direct electron transfer)-GOx exhibits DET ability deriving from the collaboration of MWCNTs and metal impurities, is unable to electrooxidize glucose. GCA (glucose-specific catalytic activity)-GOx cannot undergo DET with the electrode.  相似文献   

3.
DNA as a medium for electron transfer has been widely used in photolytic processes but is seldom applied to dark reaction of CO2 reduction. A G‐quadruplex nanowire (tsGQwire) assembled by guanine tetranucleotides was used to host several metal complexes and further to mediate electron transfer processes in the electrochemical reduction of CO2 catalyzed by these complexes. The tsGQwire modified electrode increased the Faradaic efficiency of cobalt(II) phthalocyanine (CoIIPc) 2.5‐folds for CO production than bare CoIIPc electrode, with a total current density of 11.5 mA cm?2. Comparable Faradaic efficiency of HCOOH production was achieved on tsGQwire electrode when the catalytic center was switched to a GQ targeting Ru complex. The high efficiency and selectivity of electrocatalytic CO2 reduction was attributed to the unique binding of metal complexes on G‐quadruplex and electron transfer mediated by GQ nanowire to achieve efficient redox cycling of catalytic centers on the electrode.  相似文献   

4.
The paper describes recent results of studies on the accelerating effect of sulfur‐containing protein amino acids and water activity on multistep Bi(III) ion electroreduction at mercury electrode. The catalytic effect of methionine (Mt), cystine (CY) and cysteine (CE) was analyzed based on kinetic and thermodynamic parameters, which correlated with water activity. Investigations of adsorption of those amino acids at the electrode/solution interface provided information for the analysis of the electrical double layer and its influence on the kinetics of the electrode process. The multistep Bi(III) electroreduction process is controlled by the kinetics of active complexes formation, which precedes transfer of consecutive electrons.  相似文献   

5.
赵淑贤  曾涵 《应用化学》2013,30(9):1073-1081
采用分光光度法、Clark型氧电极以及循环伏安法结合旋转圆盘电极技术,分别测定了游离多铜氧化酶在扩散型电子中介体存在时,催化氧还原循环中每一个组成步骤的速率并进行了比较,试图确定这个催化反应的决速步骤。 实验结果表明,漆酶分子内部的电子迁移速率(103/s)最高,酶催化氧气化学还原的速率次之(91/s),酶催化中介体氧化产物在电极上电化学还原的速率再次之(0.19/s或7.8×10-3 cm/s),底物O2气以及氧化态/还原态电子中介体2,2′-连氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)的传质系数分别为1.7×10-3、4.4×10-4 和6.3×10-4 cm/s,相应地酶催化中介体氧化的化学反应速率为0.047/s,酶催化中介体氧化的化学反应步骤以及中介体的传质步骤是影响催化反应速率的关键。 在此基础上,通过系统改变体系中酶的种类、活力以及浓度、中介体种类及浓度、溶液温度及pH值等参数,研究了酶电催化氧还原活力与这些参数之间的依赖关系,进一步确证了前述的结论。  相似文献   

6.
Vastarella W  Nicastri R 《Talanta》2005,66(3):627-633
In this work quantum-sized CdS nanocrystals were synthesized using a quaternary water-in-oil microemulsion and immobilized onto gold working electrode by self-assembled monolayers techniques. Formaldehyde dehydrogenase was covalently immobilized onto a protecting membrane, which was stratified on part of the semiconductor nanoparticles modified electrode. The covalent enzyme immobilization has been required to improve the stability of the catalytic oxidation of formaldehyde, which occurs after light stimulation of the semiconductor through the electron/hole recombination. A study about the best electrochemical oxidation potentials under different flow conditions was performed. Preliminary sensor stability and interferences tests were also carried out, for a sensitive and selective detection of formaldehyde. A detection limit of 41 ppb of formaldehyde was calculated and an operational stability of 6 h was achieved under flow conditions by means of this novel amperometric biosensor based on FDH-semiconductor hybrid systems, not requiring NAD+/NADH as charge transfer in the enzymatic reaction.  相似文献   

7.
This paper describes the direct electrochemistry and electrocatalysis of myoglobin immobilized on graphene‐cetylramethylammonium bromide (CTAB)‐ionic liquid nanocomposite film on a glassy carbon electrode. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, X‐ray photoelectron spectroscopy, and electrochemistry. It was found that the high surface area of graphene was helpful for immobilizing more proteins and the nanocomposite film could provide a favorable microenvironment for MB to retain its native structure and activity and to achieve reversible direct electron transfer reaction at an electrode. The ionic liquid may play dual roles here: it keeps the protein's activity and improves stability of the nanocomposite film; it also serves as a binder between protein and electrode, therefore, enhancing the electron transfer between the protein and the electrode. The nanocomposite films also exhibit good stability and catalytic activities for the electrocatalytic reduction of H2O2.  相似文献   

8.
A novel biosensor was developed by entrapping cytochrome c (Cyt c) in thin films of the room temperature ionic liquid (RTIL) containing nanocomposites of poly(diallyldimethylammonium chloride)‐graphene nanosheets‐gold nanoparticles (PDDA‐Gp‐AuNPs) at a 11‐mercaptoundecanoic acid‐6‐mercapto‐1‐hexanol modified gold electrode. The synthesized PDDA‐Gp‐AuNPs hybrid nanocomposites were characterized by UV‐vis spectroscopy, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The PDDA‐Gp‐AuNPs nanocomposites could increase the effective surface of the electrode, enhance the fixed amount of Cyt c on the electrode surface, promote the electron transfer and facilitate the catalytic activity of Cyt c. The RTIL could provide a biocompatible microenvironment to keep Cyt c biological activities, act as an effective mediator to immobilize a large number of Cyt c on the electrode and have good conductivity to improve electron transfer. Therefore, the resultant electrode exhibited good electrochemical performance and electrocatalytic activity. It could be used for electrochemical detection of H2O2 with rapid response, high sensitivity, wide linear range and low detection limit, as well as good stability, repeatability and selectivity. The sensor might be promising for practical application.  相似文献   

9.
The usefulness of fullerene modified glassy carbon electrode in mediating the reduction of cefitizoxime in solubilized system has been demonstrated. Due to the unique structure and extraordinary properties, fullerene shows higher catalytic efficiency towards cefitizoxime reduction. The kinetic parameters, electron transfer coefficient (α) and rate constant (K0) across the modified electrode are 0.37 and 0.1081/s respectively. The proposed square‐wave voltammetric method is linear over the concentration range 1.2–10.3 µg/mL. The limit of detection (LOD) is found 0.27 ng/mL. High sensitivity and selectivity together with low detection limit of the electrode response make it suitable for the determination of cefitizoxime.  相似文献   

10.
The mechanism of dissociative electron transfer (ET) to a series of organic chlorides has been investigated both at an inert electrode and at a catalytic surface such as Ag; electrocatalysis is important only when breaking of the carbon-halogen bond is concerted with the ET.  相似文献   

11.
血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为   总被引:6,自引:0,他引:6  
利用吸附法将血红蛋白(Hb)固定在碳纳米管修饰碳糊电极表面,制成稳定的固载Hb碳纳米管修饰电极,研究了Hb在碳纳米管修饰电极上的直接电化学行为.固载Hb的碳纳米管修饰电极在pH=7.0的PBS(磷酸盐缓冲溶液)中有一对相当可逆的循环伏安氧化还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.式电位为-0.160 V(vs SCE),随扫描速度变化很小.电子转移数为1.021,近似为一个辅基发生电子转移.Hb在碳纳米管修饰电极表面的电子转移常数为0.0816 s-1,远大于亚甲蓝作媒介体时Hb的电子转移反应速率常数.应用于过氧化氢、三氯乙酸和硝基苯等的电催化还原,固定在碳纳米管修饰碳糊电极的血红蛋白表现出稳定且较高的催化活性.  相似文献   

12.
Triphenylamines with thienyl groups are electro‐oxidatively polymerized to yield the corresponding branched polymers on an electrode. The resulting polymers show significantly better redox properties, such as redox activity, catalytic activity, and conductivity when compared with for example the linear polymeric analog. The good properties of the branched polymers are based on the higher electronic conductivity (2–6 S/cm), since the branching provides multiple routes for charge carriers. The redox‐active polymers show high capacity (ca. 40 mC/cm2) and catalytic activity for the electron transfer of ferrocene on the electrode.  相似文献   

13.
交流阻抗法研究四羧基酞菁锌掺杂的二氧化钛半导体电极   总被引:1,自引:0,他引:1  
用电沉积和丝网印刷法制备了纳米二氧化钛膜电极及四羧基酞菁锌(ZnPcTc)掺杂的多孔纳米二氧化钛半导体电极. 采用交流阻抗法(EIS)对二氧化钛膜的电子传输性能以及界面性质进行了表征, 确定了各阻抗弧对应的电极过程. 采用合理的模型计算了电极的电子传输动力学参数. 结果表明, 掺杂ZnPcTc后, 膜电阻明显降低, 且电极-电解液界面电容有所增大, 有利于TiO2电极在染料敏化太阳能电池器件中的应用.  相似文献   

14.
Herein, an enzyme‐electrode based on the oxygen‐insensitive carbon monoxide dehydrogenase (CODH) containing molybdenum (Mo) and copper (Cu), flavin adenine dinucleotide (FAD) and two different [2Fe‐2 S] clusters as cofactors from the aerobic bacterium Hydrogenophaga pseudoflava, is proposed as a platform for dissolved CO concentration monitoring. The immobilized CODHs on Au electrode retain their catalytic activity and demonstrates changes to cyclic voltammetry and amperometry signals upon interactions with various dissolved CO concentrations. Cyclic voltammetry shows that CODHs are capable of direct electron transfer without any mediator use as oxidative current which starts around ?0.268 V (vs Ag/AgCl) is observed in the presence of CO. When CO‐saturated standard solution was spiked sequentially into the gas‐tight reactor, amperometry analysis shows current increased accordingly with response time within 5 s. Our study demonstrates that this enzyme‐electrode is promising to serve as platform for developing an on‐line dissolved CO concentration monitoring tool which is essential to fill in the gap for conventional technologies which are limited to off‐line measurement.  相似文献   

15.
A novel glucose biosensor was constructed via direct covalent attachment of glucose oxidase onto epoxy group containing polymeric electron transfer mediator, Poly(glycidyl methacrylate‐co‐vinylferrocene). A copolymer of glycidyl methacrylate (GMA) and vinylferrocene (VFc) with different molar ratios has been prepared by free radical copolymerization. These copolymers have been utilized as polymeric mediators for amperometric glucose sensing. The catalytic electrochemistry of the enzyme electrode with the copolymer was investigated. Copolymer acts as an electron transfer mediator between the redox center of Glucose oxidase (GOx) and the electrode. The stability, reusability, pH and temperature response of the biosensor as well as its kinetic parameter have also been studied.  相似文献   

16.
通过水热晶化法制备了MIL-101(Fe)金属有机骨架材料, 利用X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 热重分析(TG)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和X射线光电子能谱(XPS)对催化剂的结构和形貌进行了表征. 结果表明, 该材料用于催化β-蒎烯与甲醛的Prins缩合制备诺卜醇反应的效果优异; 催化剂合成温度、 合成时间、 催化剂用量、 反应溶剂、 反应温度和反应时间对β-蒎烯的反应结果均有一定影响. 在相似的反应条件下, 合成的MIL-101(Fe)催化β-蒎烯制备诺卜醇反应的最佳条件为使用150 ℃下反应15 h合成的催化剂MIL-101(Fe), 在90 ℃下反应8 h得到的β-蒎烯转化率高达97.3%, 诺卜醇选择性达到96.7%.  相似文献   

17.
The study of direct electron transfer between enzymes and electrodes is frequently hampered by the small fraction of adsorbed proteins that remains electrochemically active. Here, we outline a strategy to overcome this limitation, which is based on a hierarchical analysis of steady-state electrocatalytic currents and the adoption of the "binary activity" hypothesis. The procedure is illustrated by studying the electrocatalytic response of horseradish peroxidase (HRP) adsorbed on graphite electrodes as a function of substrate (hydrogen peroxide) concentration, electrode potential, and solution pH. Individual contributions of the rates of substrate/enzyme reaction and of the electrode/enzyme electron exchange to the observed catalytic currents were disentangled by taking advantage of their distinct dependence on substrate concentration and electrode potential. In the absence of nonturnover currents, adoption of the "binary activity" hypothesis provided values of the standard electron-transfer rate constant for reduction of HRP Compound II that are similar to those reported previously for reduction of cytochrome c peroxidase Compound II. The variation of the catalytic currents with applied potential was analyzed in terms of the non-adiabatic Marcus-DOS electron transfer theory. The availability of a broad potential window, where catalytic currents could be recorded, facilitates an accurate determination of both the reorganization energy and the maximum electron-transfer rate for HRP Compound II reduction. The variation of these two kinetic parameters with solution pH provides some indication of the nature and location of the acid/base groups that control the electronic exchange between enzyme and electrode.  相似文献   

18.
The electrochemical behavior of a bis(N-2-methylphenyl-salicyldenaminato)copper(Ⅱ) complex spiked in a carbon paste electrode (BMPSCu-CPE) and its electrocatalytic reduction of H2O2 were examined using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry. Cyclic voltammetry was used to study the redox properties of BMPSCu-CPE at various potential scan rates. The apparent charge transfer rate constant and the transfer coefficient for the electron transfer between BMPSCu and the carbon paste electrode (CPE) were 1.9±0.1 s-1 and 0.43, respectively. BMPSCu-CPE had excellent electrocatalytic activity for H2O2 reduction in 0.1 mol/L phosphate buffer solution (pH 5.0), and it decreased the overpotential by 300 mV as compared to CPE alone. The diffusion coefficient and kinetic parameters such as the heterogeneous catalytic electron transfer rate constant and electron transfer coefficient for the reduction of H2O2 at the BMPSCu-CPE surface were also determined using electrochemical methods. Differential pulse voltammetry showed two linear dynamic ranges of 1.0-10.0 and 10.0-300.0 μmol/L and a detection limit of 0.63 μmol/L H2O2. The BMPSCu-CPE has excellent reproducibility and long term stability, and it was successfully applied for the determination of H2O2 in two pharmaceutical samples: an antiseptic solution and a hair dying cream.  相似文献   

19.
The preparation and electrochemical properties of a glassy carbon (GC) electrode modified with cobaloxime complex were investigated. The complex of the type [CoIII(DO)(DOH)pn)Cl2] where (DO)(DOH)pn = N2,N2'-propanediylbis-2,3-butanedione-2-imine-3-oxime) was adsorbed irreversibly and strongly on the surface of preanodized glassy carbon electrode. Electrochemical behavior and stability of modified GC electrode were investigated by cyclic voltammetry. The electrocatalytic reduction of dioxygen has been studied using this modified glassy carbon electrode by cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as diagnostic techniques. The modified electrode showed excellent eletrocatalytic ability for the reduction of dioxygen to hydrogen peroxide in acetate buffer (pH 4.0) with overpotential 1.0 V lower than the plain glassy carbon electrode. The formal potential for this modified electrode is not shifted to more negative potentials by repeated reduction-oxidation cycles in oxygen-saturated supporting electrolyte solution. The apparent electron transfer rate constant (kS), the transfer coefficent (alpha) and the catalytic rate constant of O2 reduction at a GC modified electrode were determined by cyclic voltammetry and rotating disk electrode voltammetry and were found to be around 2.6 s(-1), 0.33 and 2.25 x 10(4) M(-1) s(-1). Based on the results, a catalytic mechanism is proposed and discussed.  相似文献   

20.
碳纳米管/铜纳米结构电极材料在葡萄糖检测中的应用   总被引:1,自引:0,他引:1  
利用电化学沉积法制备了碳纳米管/铜纳米结构电极材料, 采用扫描电子显微镜和电化学方法对电极表面的形貌和电化学性质进行了表征. 结果表明, 碳纳米管/铜纳米结构电极材料具有较大的电化学活性表面积、 高稳定性、 良好的导电性以及高葡萄糖电氧化活性, 有望用于葡萄糖的检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号