首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct electron transfer of glucose oxidase promoted by carbon nanotubes is without value in certain mediator-free applications
Authors:Yan Wang  Yongjian Yao
Institution:1. School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
Abstract:We have investigated the direct electron transfer (DET) promoted by carbon nanotubes (CNTs) on an electrode containing immobilized glucose oxidase (GOx) with the aim to develop a third-generation glucose biosensor and a mediator-free glucose biofuel cell anode. GOx was immobilized via chitosan (CS) on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs). Cyclic voltammetric revealed that the GOx on the surface of such an electrode is unable to simultaneously demonstrate DET with the electrode and to retain its catalytic activity towards glucose, although the MWCNTs alone can promote electron transfer between GOx and electrode. This is interpreted in terms of two types of GOx on the surface, the distribution and properties of which are quite different. The first type exhibits DET capability that results from the collaboration of MWCNTs and metal impurities, but is unable to catalyze the oxidation of glucose. The second type maintains its glucose-specific catalytic capability in the presence of a mediator, which can be enhanced by MWCNTs, but cannot undergo DET with the electrode. As a result, the MWCNTs are capable of promoting the electron transfer, but this is without value in some mediator-free applications such as in third-generation glucose biosensors and in mediator-free anodes for glucose biofuel cells.
Graphical Abstract
Two types of glucose oxidase (GOx) are immobilized on the surface of multi-walled carbon nanotubes (MWCNTs)-modified electrode. DET (direct electron transfer)-GOx exhibits DET ability deriving from the collaboration of MWCNTs and metal impurities, is unable to electrooxidize glucose. GCA (glucose-specific catalytic activity)-GOx cannot undergo DET with the electrode.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号