首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocomposite of hard (BaFe12O19)/soft ferrite (Ni0.8Zn0.2Fe2O4) have been prepared by the sol–gel process. The nanocomposite ferrite are formed when the calcining temperature is above 800 °C. It is found that the magnetic properties strongly depend on the presintering treatment and calcining temperature. The “bee waist” type hysteresis loops for samples disappear when the presintering temperature is 400 °C and the calcination temperature reaches 1100 °C owing to the exchange-coupling interaction. The remanence of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite with the mass ratio of 5:1 is higher than a single phase ferrite. The specific saturation magnetization, remanence magnetization and coercivity are 63 emu/g, 36 emu/g and 2750 G, respectively. The exchange-coupling interaction in the BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite is discussed.  相似文献   

2.
Single phase BaM (BaFe12O19) ferrites are prepared by using sol–gel method. The preparing conditions of samples are investigated in detail, such as acid/nitrate ratio, the value of pH and annealing temperature. The best conditions on preparing BaFe12O19, which can be obtained on a Fe/Ba ratio of 12, the citric acid contents R = 3, the starting pH of solution is 9, and annealing temperature 950 °C. The thermal decomposition behavior of the dried gel was examined by TG–DSC, the structure and properties of powders were measured respectively by XRD techniques. The magnetic properties of barium ferrites are emphatically researched about the changing crystallite size and annealing temperature by the vibrating sample magnetometer (VSM). Magnetic measurement shows that the barium ferrite samples annealed at 1000 °C has the maximal coercive field of 5691.91 Oe corresponding to the maximal remnant magnetization of 35.60 emu/g and the sample synthesized at 1000 °C has the maximal saturation magnetization of 60.75 emu/g.  相似文献   

3.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

4.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

5.
Microwave-assisted synthesis of SrFe12O19 hexaferrites   总被引:1,自引:0,他引:1  
Ultra-fine and homogeneous SrFe12O19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO3)3·9H2O, Sr(NO3)2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.  相似文献   

6.
Sintering temperature and particle size dependent structural and magnetic properties of lithium ferrite (Li0.5Fe2.5O4) were synthesized and sintered at four different temperatures ranging from 875 to 1475 K in the step of 200 K. The sample sintered at 875 K was also treated for four different sintering times ranging from 4 to 16 h. Samples sintered at 1475 K have the cubic spinel structure with a small amount of α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The samples sintered at≤1275 K do not show hematite and maghemite phases and the crystals form the single phase spinel structure with the cation ordering on octahedral sites. Particle size of lithium ferrite is in the range of 13-45 nm, and is depend on the sintering temperature and sintering time. The saturation magnetization increased from 45 to 76 emu/g and coercivity decreases from 151 to 139 Oe with an increase in particle size. Magnetization temperature curve recorded in ZFC and FC modes in an external magnetic field of 100 Oe. Typical blocking effects are observed below about 244 K. The dielectric constant increases with an increase in sintering temperature and particle size.  相似文献   

7.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

8.
BiFe1−xNixO3 ceramic powders with x up to 0.10 have been prepared by the sol-gel technique. The band gap of BiFeO3 is 2.23 eV, and decreases to 2.09 eV for BiFe0.95Ni0.05O3 and BiFe0.90Ni0.10O3. The Mössbauer spectra show sextet at room temperature, indicating the magnetic ordering and the presence of only Fe3+ ions. Superparamagnetism with blocking temperature of 31 K for BiFe0.95Ni0.05O3 and 100 K for BiFe0.90Ni0.10O3 was observed. Enhanced magnetization at room temperature have been observed (1.0 emu/g for BiFe0.95Ni0.05O3 and 2.9 emu/g for BiFe0.90Ni0.10O3 under magnetic field of 10,000 Oe), which is one order larger than that of BiFeO3 (0.1 emu/g under magnetic field of 10,000 Oe). The enhanced magnetization was attributed to the suppression of the cycloidal spin structure by Ni3+ substitution and the ferrimagnetic interaction between Fe3+ and Ni3+ ions.  相似文献   

9.
In this paper, we have first demonstrated a facile and green synthetic approach for preparing superparamagnetic Fe3O4 nanoparticles using α-d-glucose as the reducing agent and gluconic acid (the oxidative product of glucose) as stabilizer and dispersant. The X-ray powder diffraction (XRD), X-ray photoelectron spectrometry (XPS), and selected area electron diffraction (SAED) results showed that the inverse spinel structure pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results exhibited that Fe3O4 nanoparticles were roughly spherical shape and its average size was about 12.5 nm. The high-resolution TEM (HRTEM) result proved that the nanoparticles were structurally uniform with a lattice fringe spacing about 0.25 nm, which corresponded well with the values of 0.253 nm of the (3 1 1) lattice plane of the inverse spinel Fe3O4 obtained from the JCPDS database. The superconducting quantum interference device (SQUID) results revealed that the blocking temperature (Tb) was 190 K, and that the magnetic hysteresis loop at 300 K showed a saturation magnetization of 60.5 emu/g, and the absence of coercivity and remanence indicated that the as-synthesized Fe3O4 nanoparticles had superparamagnetic properties. Fourier transform infrared spectroscopy (FT-IR) spectrum displayed that the characteristic band of Fe-O at 569 cm−1 was indicative of Fe3O4. This method might provide a new, mild, green, and economical concept for the synthesis of other nanomaterials.  相似文献   

10.
The sol was obtained by sol-gel method. Then, the sol was dripped onto the absorbent cotton template. The gel was obtained after the evaporation of water. Strontium ferrite microtubules were prepared after carrying out calcination process at different temperatures. The phase, morphology and particle diameter and the magnetic properties of samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. The effects of Fe3+/Sr2+ mole ratio and calcination temperature on the crystal structure, morphology and magnetic properties of ferrite microtubules were studied. The external diameters of obtained SrFe12O19 microtubules were found to range between 8 and 13 μm; the wall thicknesses ranged between 1 and 2 μm. When the Fe3+/Sr2+ mole ratio and the calcination temperature were 11.5 and 850 °C, respectively, the coercivity, saturation magnetization and remanent magnetization for the samples were 7115.1 Oe, 70.1 and 42.4 emu/g, respectively. The mechanism of the formation and variation in magnetic properties of the microtubules were explained.  相似文献   

11.
Superparamagnetic Fe3O4 nanoparticles were first synthesized via soya bean sprouts (SBS) templates under ambient temperature and normal atmosphere. The reaction process was simple, eco-friendly, and convenient to handle. The morphology and crystalline phase of the nanoparticles were determined from scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD) spectra. The effect of SBS template on the formation of Fe3O4 nanoparticles was investigated using X-ray photoemission spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The results indicate that spherical Fe3O4 nanoparticles with an average diameter of 8 nm simultaneously formed on the epidermal surface and the interior stem wall of SBS. The SBS are responsible for size and morphology control during the whole formation of Fe3O4 nanoparticles. In addition, the superconducting quantum interference device (SQUID) results indicate the products are superparamagnetic at room temperature, with blocking temperature (TB) of 150 K and saturation magnetization of 37.1 emu/g.  相似文献   

12.
The preparation of W-type hexaferrite particles with the composition BaCa2Fe16O27 by microemulsion and a stearic acid sol–gel method with and without surfactant has been investigated at various sintering temperatures. The structural and magnetic characteristics have been studied by X-ray diffraction (XRD), a vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and Fourier transform infrared (FTIR) techniques. The effect of sintering temperature on the properties of BaCa2Fe16O27 hexaferrites has been studied. The value of saturation magnetization (Ms) depends on types of surfactant used. The sample prepared in the presence of polyoxyethylene (20) sorbitan monooleat (Tween 80) shows low saturation magnetization (Ms=15.10 emu/g), whereas the other sample prepared in the presence of a surfactant cetyltrimethylammonium bromide (CTAB) exhibits high saturation magnetization (Ms=24.60 emu/g) compared to the normal sample.  相似文献   

13.
Methods to synthesize magnetic Fe3O4 nanoparticles and to modify the surface of particles are presented in the present investigation. Fe3O4 magnetic nanoparticles were prepared by the co-precipitation of Fe3+ and Fe2+, NH3·H2O was used as the precipitating agent to adjust the pH value, and the aging of Fe3O4 magnetic nanoparticles was accelerated by microwave (MW) irradiation. The obtained Fe3O4 magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and vibrating sample magnetometer (VSM). The average size of Fe3O4 crystallites was found to be around 8–9 nm. Thereafter, the surface of Fe3O4 magnetic nanoparticles was modified by stearic acid. The resultant sample was characterized by FT-IR, scanning electron microscopy (SEM), XRD, lipophilic degree (LD) and sedimentation test. The FT-IR results indicated that a covalent bond was formed by chemical reaction between the hydroxyl groups on the surface of Fe3O4 nanoparticles and carboxyl groups of stearic acid, which changed the polarity of Fe3O4 nanoparticles. The dispersion of Fe3O4 in organic solvent was greatly improved. Effects of reaction time, reaction temperature and concentration of stearic acid on particle surface modification were investigated. In addition, Fe3O4/polystyrene (PS) nanocomposite was synthesized by adding surface modified Fe3O4 magnetic nanoparticles into styrene monomer, followed by the radical polymerization. The obtained nanocomposite was tested by thermogravimetry (TG), differential scanning calorimetry (DSC) and XRD. Results revealed that the thermal stability of PS was not significantly changed after adding Fe3O4 nanoparticles. The Fe3O4 magnetic fluid was characterized using UV–vis spectrophotometer, Gouy magnetic balance and laser particle-size analyzer. The testing results showed that the magnetic fluid had excellent stability, and had susceptibility of 4.46×10−8 and saturated magnetization of 6.56 emu/g. In addition, the mean size d (0.99) of magnetic Fe3O4 nanoparticles in the fluid was 36.19 nm.  相似文献   

14.
For the first time nanocrystalline magnetic particles of Mg x Fe(3−x)O4 with x ranging from 0.5 to 1.5 have been synthesized by a combustion reaction method using iron nitrate Fe(NO3)3.9H2O, magnesium nitrate Mg(NO3)2.6H2O, and urea CO(NH2)2 as fuel without intermediate decomposition and/or calcining steps. X-ray diffraction patterns of all systems showed broad peaks consistent with cubic inverse spinel structure of MgFe2O4. The absence of extra reflections in the diffraction patterns of as-prepared materials ensures the phase purity. The mean crystallite sizes determined from the prominent (311) peak of the diffraction using Scherrer’s equation and transmission electron microscopy micrographs were c.a. 40 nm with spherical morphology. Fourier transform infrared spectra of the as-prepared material showed traces of organic and metallic salt by-products; however, these could be removed by washing with deionized water. Typical hysteresis curves were obtained for all specimens in magnetic field up to 14 T between 4 and 340 K. The saturation magnetization was 48.3 emu/g and 31.3 emu/g, 44.8 emu/g, and 28.4 emu/g for x=1.0 and 0.8 at 4 K and 340 K, respectively. The saturation magnetization, M s , of nanoparticles of the MgFe2O4 specimen is about 50% higher when compared to the bulk. The enhanced magnetization measured in our nanoparticles MgFe2O4 specimens may be attributed to the uncompensated magnetic moment of iron ions between the A- and B-sites, i.e., changes in the inversion factor. Our magnetization results of MgFe2O4 specimens are comparable to the existing data for the same compound but with different particle size and prepared by different synthesis methods.  相似文献   

15.
A Sr0.8La0.2Fe11.8Co0.2O19 ferrite film has been prepared on a (0 0 1) sapphire substrate by chemical solution deposition. Structural characteristics indicate that the film is c-axis oriented and single-phase with space group P63/mmc. The grains are regular columnar with diameter between 50 and 100 nm as determined by atomic force microscopy. The sample possesses high saturation magnetization (130 emu/cm3), high coercivity (6.9 kOe), and large squareness ratio (0.9) at room temperature, which makes it a promising recording material.  相似文献   

16.
BaFe12O19 nanowire arrays having single magnetic domain size (≤460 nm) in anodic aluminum oxide (AAO) templates were prepared by sol-gel and self-propagating high-temperature synthesis techniques. The diameter of the nanowire arrays is approximately 70 nm and the length is about 2-4 μm. The specimens were characterized using X-ray diffraction, vibrating sample magnetometer, field emission scan electron microscope, atomic force microscopy and microwave vector network analyzer. The magnetic properties of BaFe12O19 nanowire arrays embedded in AAO templates were measured by VSM with a field up to 1274 KA/m at room temperature. The results indicate that the nanowire arrays exhibit large saturation magnetization and high coercivity in the range of 6000 Oe and an obvious magnetic anisotropy with the easy magnetizing axis along the length of the nanowire arrays, probably due to the shape anisotropy and magneto-crystalline anisotropy. Finally the microwave absorption properties of the nanowires were discussed.  相似文献   

17.
BaTiO3+MgFe2O4 material system was synthesized by hybrid chemical process using chlorides and nitrates of barium, titanium, iron, and magnesium. Magnetic properties of the composite samples measured as a function of annealing conditions indicated soft magnetic behavior. Saturation specific magnetization from 8 21 emu/g was observed for samples annealed at temperature between 950 and 1150 °C. Variation of specific saturation magnetization with respect to annealing temperature was related with the distribution of Fe cations in the tetrahedral and octahedral sites of MgFe2O4. Electrical properties of the samples annealed at different temperatures were measured to analyze the coexistence of ferroelectric phase. Dielectric constant varying from 15 to 200 with respect to frequency was observed for samples annealed from 950 to 1150 °C.  相似文献   

18.
A series of powders of M-typed barium hexaferrites doped with Co, Zn and Sn of general formula BaFe12-2xCox/2Znx/2SnxO19 (x=0-2.0) were prepared by the co-precipitation/molten salt method. The structures, particle morphology and magnetic properties of the products were characterized by X-ray powder diffraction, vibrating sample magnetometer and ESEM/EDX. The results show that the crystallinity of the samples decreases with increase in the doping amount x. When x is less than 0.6, it is possible to obtain perfectly crystallized hexagonal BaFe12-2xCox/2Znx/2SnxO19, where the diameters of the particles are around 500 nm. The saturation magnetization of pure barium ferrite BaFe12O19 produced with this method is 71.9 A m2 kg−1 at room temperature and the intrinsic coercivity (Hc) is 367.8 kA m−1. The doped barium hexaferrite powder obtained when x is between 0.3 and 0.4 exhibits high saturation magnetization and a temperature dependence of coercivity close to zero.  相似文献   

19.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

20.
We report detailed studies of the non-equilibrium magnetic behavior of antiferromagnetic Co3O4 nanoparticles. The temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects, and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the system shows some features that are characteristic of nanoparticle magnetism such as bifurcation of field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities and a slow relaxation of magnetization. However, strangely, the temperature at which the ZFC magnetization peaks coincides with the bifurcation temperature and does not shift on application of magnetic fields up to 1 kOe, unlike most other nanoparticle systems. Aging effects in these particles are negligible in both FC and ZFC protocols, and memory effects are present only in the FC protocol. We show that Co3O4 nanoparticles constitute a unique antiferromagnetic system which enters into a blocked state above the average Néel temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号