首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
The structure of thin films deposited by pulsed laser ablation (PLD) is strongly dependent on experimental conditions, like laser wavelength and fluence, substrate temperature and pressure. Depending on these parameters we obtained various kinds of carbon materials varying from dense, mainly tetrahedral amorphous carbon (ta-C), to less compact vertically oriented graphene nano-particles. Thin carbon films were grown by PLD on n-Si 〈100〉 substrates, at temperatures ranging from RT to 800°C, from a rotating graphite target operating in vacuum. The laser ablation of the graphite target was performed by a UV pulsed ArF excimer laser (λ=193 nm) and a pulsed Nd:YAG laser, operating in the near IR (λ=1064 nm). The film structure and texturing, characterised by X-ray diffraction analysis, performed at grazing incidence (GI-XRD), and the film density, evaluated by X-ray reflectivity measurements, are strongly affected both by laser wavelength and fluence and by substrate temperature. Micro-Raman and GI-XRD analysis established the progressive formation of aromatic clusters and cluster condensation into vertically oriented nano-sized graphene structures as a direct function of increasing laser wavelength and deposition temperature. The film density, negatively affected by substrate temperature and laser wavelength and fluence, in turn, results in a porous bulk configuration and a high macroscopic surface roughness as shown by SEM characterisation. These structural property modifications induce a relevant variation also on the emission properties of carbon nano-structures, as evidenced by field emission measurements. This work is dedicated to our friend Giorgio who passed away 20th August.  相似文献   

2.
Carbon nitride films have been deposited in the inverse pulsed laser deposition (IPLD) geometry by ablating a graphite target in nitrogen atmosphere while the spatial orientation of the target (and substrate) normal was varied. Two different orientations were tested, in one of which the axis of the plasma plume was made to point downwards, imposing the maximum gravitational barrier on the ablated species and make them move against the gravitational field while growing the film in order to verify the extent of a possible orientational effect. The thickness distribution of films obtained in different orientations was sampled along their axes of symmetry by stylus profilometry. The results indirectly proved that the kinetic energy of the species responsible for building the IPLD films surpassed the effect of gravitational field, even in the outer regions of the films, where the ablated species were believed to be thermalised. Evidences are also provided that utmost care should be taken to keep experimental conditions, like process pressure, spot size, etc., constant in order to get reproducible results.  相似文献   

3.
Recently, we proposed an alternative arrangement to traditional on- or off-axis PLD geometries, termed inverse PLD (IPLD) that is capable of producing films of improved surface morphology. Two configurations of this new target-substrate arrangement were developed, namely static and co-rotating IPLD. In the static IPLD configuration, the substrate is stationary with respect to the ablated spot; while in the co-rotating IPLD configuration the substrate is fixed to the target surface and rotates simultaneously with the target, hence offering an appealingly simple approach to homogenize film properties.Here we report the growth of CNx and Ti films, simultaneously deposited in the co-rotating and static IPLD arrangements. The homogeneity of the co-rotating films is described by a thickness inhomogeneity index, which allows for the comparison of films of different lateral dimension. A semi-analytical, semi-numerical model is proposed to derive the radial variation of the growth rate of co-rotating IPLD films from the lateral growth rate distributions measured along the symmetry axes of static IPLD films. The laterally averaged growth rate, LAGR is used to describe how the ambient pressure affects growth in the 0.5-50 Pa domain. As an example, the absolute error between the measured and calculated radial growth rate variation, obtained at 5 Pa, was less than 3%, while the LAGR of CNx layers grown by co-rotating IPLD was predicted with 20% accuracy.  相似文献   

4.
The growth of ZnO thin films on sapphire substrate using the femtosecond PLD technique is reported. The effect of substrate temperature and oxygen pressure on the structural properties of the films was studied. Highly c-axis oriented ZnO films can be grown on sapphire substrates under vacuum conditions using the femtosecond PLD process. There is an optimum substrate temperature for the pulsed laser deposition of ZnO film that enhances the thermodynamic stability and allows the formation of well-crystallized thin films. The crystal quality of the films can be further improved by increasing the deposition time and introducing oxygen during the pulsed laser deposition process.  相似文献   

5.
We have compared the quality of carbon films deposited with magnetically guided pulsed laser deposition (MGPLD) and conventional pulsed laser deposition (PLD). In MGPLD, a curved magnetic field is used to guide the plasma but not the neutral species to the substrate to deposit the films while, in conventional PLD, the film is deposited with a mixture of ions, neutral species and clusters. A KrF laser pulse (248 nm) was focused to intensities of 10 GW/cm2 on a carbon source target and a magnetic field strength of 0.3 T was used to steer the plasma around a curved arc to the deposition substrate. Electron energy loss spectroscopy was used in order to measure the fraction of sp3 bonding in the films produced. It is shown that the sp3 fraction, and hence the diamond-like character of the films, increased when deposited only with the pure ion component by MGPLD compared with films produced by the conventional PLD technique. The dependence of film quality on the laser intensity is also discussed. Received: 7 December 2000 / Accepted: 20 August 2001 / Published online: 2 October 2001  相似文献   

6.
One of the most important and promising materials from metal oxides is ZnO with specific properties for near UV emission and absorption optical devices. The properties of ZnO thin films strongly depend on the deposition method. Among them, pulsed laser deposition (PLD) plays an important role for preparing various kinds of ZnO films, e.g. doped, undoped, monocrystalline, and polycrystalline. Different approaches — ablation of sintered ZnO pellets or pure metallic Zn as target material are described. This contribution is comparing properties of ZnO thin films deposited from pure Zn target in oxygen atmosphere and those deposited from sintered ZnO target. There is a close connection between final thin film properties and PLD conditions. The surface properties of differently grown ZnO thin films are measured by secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, different approaches — ablation of sintered ZnO pellet or pure metallic Zn as target materials are described. The main results characterize typical properties of ZnO films versus technological parameters are presented. Presented at 5-th International Conference Solid State Surfaces and Interfaces, November 19–24, 2006, Smolenice Castle, Slovakia  相似文献   

7.
Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence and at high substrate temperatures, the specific resistivity of the films, 2–3×10-4 Ω cm, is comparable to values obtained with excimer lasers, whereas the resistivities obtained at room temperature are somewhat higher than those of films produced by excimer lasers. The transmission coefficient of visible light, about 0.9, is also comparable to values for films deposited by excimer lasers. The crystalline structure of films produced at 355 nm is similar to that of samples produced by these lasers. Received: 16 January 2001 / Accepted: 24 July 2001 / Published online: 17 October 2001  相似文献   

8.
Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the initial growth of titanium nitride (TiN) thin films on single-crystal (100) MgO substrates by pulsed laser deposition (PLD). This is the first RHEED study where the growth of TiN films is produced by PLD directly from a TiN target. At the initial stage of the growth (average thickness ∼2.4 nm) the formation of islands is observed. During the continuous growth the islands merge into a smooth surface as indicated by the RHEED, atomic force microscopy and field emission scanning electron microscopy. These observations are in good agreement with the three-dimensional Volmer–Weber growth type, by which three-dimensional crystallites are formed and later cause a continuous surface roughening. This leads to an exponential decrease in the intensity of the specular spot in the RHEED pattern as well.  相似文献   

9.
Pulsed laser deposition (PLD) is a conceptually and experimentally simple yet highly versatile tool for thin films and multi-layer film research. The mechanisms, advantages and disadvantages of pulsed laser deposition were reviewed. The process and some methods to resolve the drawbacks of PLD were discussed. Pulsed laser deposition of hydroxyapatite thin films was reviewed. Simple adjustment of PLD parameters can deposit hydroxyapatite in situ in crystalline form, amorphous films or HA with other calcium phosphate phases. Compared with plasma sprayed HA coatings the pulsed laser deposition HA thin films have higher coating/substrate adhesion and have minor undesirable phases under optimal conditions. Finally, we suggested some new researches should be done.  相似文献   

10.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

11.
Thin films of polyethylene glycol (PEG) of average molecular weight, 1400 amu, were deposited by both matrix-assisted pulsed laser evaporation (MAPLE) and pulsed laser deposition (PLD). The deposition was carried out in vacuum (∼10-6 Torr) with an ArF (λ=193 nm) laser at a fluence between 150 and 300 mJ/cm2. Films were deposited on NaCl plates, Si(111) wafers, and glass slides. The physiochemical properties of the films are compared via Fourier transform infrared spectroscopy (FTIR), electrospray ionization (ESI) mass spectrometry, and matrix-assisted laser desorption and ionization (MALDI) time-of-flight mass spectrometry. The results show that the MAPLE films nearly identically resemble the starting material, whereas the PLD films do not. These results are discussed within the context of biomedical applications such as drug delivery coatings and in vivo applications where there is a need for transfer of polymeric coatings of PEG without significant chemical modification. Received: 2 March 2001 / Accepted: 5 March 2001 / Published online: 23 May 2001  相似文献   

12.
利用飞秒脉冲激光沉积法在n-Si(100)单晶衬底上制备了ZnO薄膜, 分析了衬底温度、激光能量、氧压及退火处理对薄膜结构和光学性能的影响. X射线衍射结果表明, 当激光能量为15?mJ、氧压为10?mPa时, 80?℃生长的薄膜取向性最好. 场扫描电子显微镜结果显示薄膜的晶粒尺寸随激光能量的增加而减小、随衬底温度的升高而增大且退火后明显变大. 紫外-可见透射光谱显示薄膜具有90%以上的可见光透过率.光致发光谱表明当氧压为10 mPa时,除了ZnO的紫外本征峰外, 还有一波长为410 nm的强紫光峰, 当氧压增至20 mPa以上, 所有缺陷峰均消失, 只有376 nm处的紫外本征峰. 与纳秒激光法所制备的薄膜特性进行了比较, 结果表明, 虽然纳秒激光沉积所制备的薄膜具有更高的c轴取向度, 但飞秒激光沉积制备的薄膜具有更好的发光性能. 关键词: 氧化锌 飞秒脉冲激光沉积 透过率 光致发光  相似文献   

13.
韩军  张鹏  巩海波  杨晓朋  邱智文  自敏  曹丙强 《物理学报》2013,62(21):216102-216102
本文研究了脉冲激光沉积(PLD)生长过程中, 铝掺量、氧压及衬底温度等实验参数对ZnO:Al(AZO)薄膜生长的影响, 并利用扫描电子显微镜、原子力显微镜、X射线衍射、霍尔效应、光透射光谱等实验手段对其透明导电性能进行了探讨. 变温霍尔效应和光透射测量表明, 当靶材中铝掺量大于0.5 wt%时, 所制备AZO薄膜中铝施主在80 K时已完全电离, 因Bernstein-Moss (BM) 效应其带隙变大, 均为重掺杂简并半导体. 进一步系统研究了氧压和衬底温度对AZO薄膜透明导电性能的影响, 实验发现当氧压为1 Pa, 衬底温度为200 ℃时, AZO 导电性能最好, 其霍尔迁移率为28.8 cm2/V·s, 薄膜电阻率最小可达2.7×10-4 Ω·cm, 且在可见光范围内光透过率超过了85%. 氧压和温度的增加, 都会导致薄膜电阻率变大. 关键词: 脉冲激光沉积法 ZnO:Al薄膜 透光性 导电性  相似文献   

14.
One advantage of the pulsed laser deposition (PLD) method is the stoichiometric transfer of multi-component target material to a given substrate. This advantage of the PLD determined the choice to prepare chalco-genide-based thin films with an off-axis geometry PLD. Ag-As-S and Cu-Ag-As-Se-Tetargets were used to deposit thin films on Si substrates for an application as a heavy metal sensing device. The films were characterized by means of Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM), and electrochemical measurements. The same stoichiometry of the films and the targets was confirmed by RBS measurements. We observed a good long-term stability of more than 60 days and a nearly Nernstian sensitivity towards Pb and Cu, which is comparable to bulk sensors.  相似文献   

15.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

16.
We report novel pulsed laser deposition conditions that were used to obtain superconducting epitaxial YBCO thin films, grown in situ using an oxygen pressure lower than the usual one during the cool-down time. We studied the influence of the PLD conditions as substrate temperature, oxygen pressure, laser fluence, and number of laser pulses on the crystallographic and morphological features, and on the superconducting properties of the films. Good superconducting properties were obtained without a high temperature post-deposition annealing process. A maximum critical temperature of 88.6 K was obtained.  相似文献   

17.
HgCdTe thin films have been deposited on Si(1 1 1) substrates at different substrate temperatures by pulsed laser deposition (PLD). An Nd:YAG pulsed laser with a wavelength of 1064 nm was used as laser source. The influences of the substrate temperature on the crystalline quality, surface morphology and composition of HgCdTe thin films were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDS). The results show that in our experimental conditions, the HgCdTe thin films deposited at 200 °C have the best quality. When the substrate temperature is over 250 °C, the HgCdTe film becomes thermodynamically unstable and the quality of the film is degraded.  相似文献   

18.
《Physics letters. A》1997,235(3):267-270
The growth of Cu films by pulsed laser deposition (PLD) is studied with molecular dynamics simulations. We focus on examining the effects of high momentary deposition rate and energetic particle impact in the PLD process. Simulations show that these two factors can promote surface atomic mobility and lead to 2D smooth growth of films at lower substrate temperature. These features are consistent with experiments.  相似文献   

19.
Pulsed laser deposition (PLD) and hybrid pulsed laser deposition (HPLD) systems were used for nanocrystalline diamond (NCD) film growth on Si(100) and sapphire(0001) substrates. The PLD system was based on a KrF excimer laser (=248 nm,20 ns), which ablated a graphite target in pure oxygen or hydrogen ambient. The HPLD system was based on a combination of PLD and additional capacitively coupled radio-frequency discharges (13.56 MHz) in argon–hydrogen ambient. Radio-frequency power was applied to two plane parallel electrodes or directly to the substrate holder. The working atmosphere pressure was varied from 1 Pa to 220 Pa and the substrate temperature was varied from 20 °C to 660 °C. X-ray diffraction analysis, Raman spectroscopy and a profilometer were used to study the deposited film properties. A band around 1180 cm-1, which can be attributed to NCD, occurred in the Raman spectra. A characteristic diamond peak at 1332 cm-1 was not observed. Films prepared by HPLD showed better compositional homogeneity (from Raman analysis) than films created by PLD. PACS 52.80.Pi; 81.07.Bc; 81.15.Fg  相似文献   

20.
Iron films were produced by pulsed laser deposition (PLD) of iron in Ar gas and M?ssbauer spectra of these films were obtained at room temperature. The orientation of the hyperfine magnetic field was found to vary depending on the pressure of the Ar gas. Iron films produced at low Ar pressures exhibited magnetic fields parallel to the substrate surface. The magnetic field became increasingly perpendicular to the substrate with increasing Ar pressure. Collisions with Ar gas molecules reduced the translational energies of laser-evaporated iron atoms and thus the orientation of crystals formed on the substrate varied depending on the Ar pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号