首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用表面引发原子转移自由基聚合方法合成了核壳结构的磁性高分子纳米微粒. 作为聚合反应引发剂的3-氯丙酸, 首先与油酸修饰的Fe3O4纳米微粒表面的部分油酸置换, 然后在Fe3O4纳米微粒表面引发甲基丙烯酸甲酯聚合, 合成的纳米复合材料用TEM, FTIR, XRD和DSC表征. 磁性测试结果表明, 所制备的磁性高分子纳米微粒仍具有超顺磁性, 但由于聚合物的存在, 其饱和磁化强度降低.  相似文献   

2.
超顺磁性高分子微球的制备与表征   总被引:20,自引:2,他引:18  
用化学共沉淀方法制备了Fe3O4纳米微粒,并用油酸(十八烯酸)和十二烷基苯磺酸钠为双层表面活性剂进行表面修饰,制备了稳定的水分散性纳米Fe3O4可聚合磁流体.在Fe3O4磁流体存在下,将苯乙烯与甲基丙烯酸通过乳液聚合方法制备了磁性高分子微球.透射电镜研究表明,Fe3O4微粒的平均粒径在10nm左右,乳液聚合形成的磁性高分子微球的粒径平均约为130nm;用超导量子干涉仪对微粒及高分子微球进行了磁性表征,结果表明,合成的Fe3O4纳米微粒以及磁性高分子微球均具有超顺磁性.同时,还用红外光谱及X射线衍射表征了磁性高分子微球的化学成分和晶体结构.用热失重方法测得磁性高分子微球中磁性物质的含量为23.6%.  相似文献   

3.
Fe3O4纳米微粒是一种制备磁性液体的重要组成部分。但Fe3O4纳米微粒不稳定,极易氧化成γ-Fe2O3,其磁化强度也会明显降低[1-2]。铁氧体还易为酸溶解,化学反应式为:MFe2O4 8H M2 2Fe3 4H2O式中M为Fe、Co、Mn等二价金属。在Massart法制备酸性离子型磁性液体的方法中,采用了Fe(NO  相似文献   

4.
新型磁性纳米金修饰过氧化氢生物传感器的研制   总被引:1,自引:0,他引:1  
利用共沉淀法合成纳米Fe3O4颗粒,将半胱氨酸吸附到纳米Fe3O4微粒表面,借助半胱氨酸的巯基(-SH)对纳米金的强烈吸附,使纳米金自组装到磁性颗粒上,再通过静电吸附作用自组装辣根过氧化酶(HRP),合成了Fe3O4/Cys/Au/HRP纳米复合粒子,最后通过磁力将其修饰到固体石蜡碳糊电极表面,制得新型过氧化氢生物传感器.以对苯二酚作为电子媒介,用计时电流法对H2O2进行测定,线性范围为2.4 X10-3~6.0×10-6mol/L,检出限(S/N=3)为2.5 X 10-6mol/L,响应时间小于10 s.磁性纳米微粒Fe3O4/Cys/Au能够高效地保持HRP的生物活性.该新型传感器已用于实际样品测定.  相似文献   

5.
胡玮  娄兆文 《化学研究》2013,(2):144-148
以3-氨丙基三乙氧基硅烷(APTES)作为氨基化试剂,通过硅烷化反应使其键合于Fe3O4纳米颗粒表面,制备了表面氨基化的磁性Fe3O4纳米复合颗粒;利用红外光谱分析了产物的化学键合特征,利用电位滴定测定了合成产物表面的-NH2含量,探讨了活化方式、反应溶剂、投料比、温度、时间等因素对氨基化修饰效果的影响.结果表明,APTES成功地包覆在磁性Fe3O4纳米微粒表面;在乙醇-水体系中,在Fe3O4与APTES投料比3∶8、温度60℃下反应12h,得到的Fe3O4纳米颗粒表面APTES修饰效果最佳,表面-NH2含量高达1 400±50μmol·g-1.  相似文献   

6.
采用直接沉淀法合成了Fe3 O4@ YF3:Eu3核壳结构磁性-荧光性双功能纳米复合颗粒,对其结构和性能进行了表征.XRD分析表明,得到了结晶良好的尖晶石型Fe3 O4纳米晶和正交相的YF3纳米晶.TEM照片表明,双功能复合颗粒具有明显的核壳结构.构成核的Fe3 O4纳米颗粒尺寸在40 ~80nm之间.Fe3 O4@ YF3:Eu3+核壳结构复合纳米颗粒的尺寸约为100 ~250 nm,壳层YF3:Eu3+厚度介于20 ~30 nm之间.EDS分析表明样品由Y,F,Eu,O和Fe元素组成.荧光光谱和磁性测试结果表明,复合颗粒同时具有良好的发光性和较强的磁性,使其在生物医学领域具有潜在的应用.  相似文献   

7.
通过静电纺丝法制备出含有Fe3O4纳米微粒的TiO2纳米纤维,再采用浸渍还原法将Au纳米微粒嵌入到TiO2纳米纤维上,制备出一种具有较强磁性和良好可见光响应能力的复合光催化材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见固体漫反射光谱仪(UV-VisDRS)等对样品的结构和形貌进行表征,并以降解罗丹明B(RhB)为模型反应,考察了样品在可见光照射下的光催化性能.结果表明,嵌入Au纳米微粒可使复合纳米纤维在可见光下降解RhB时表现出非常好的降解速率和降解率;同时,将Fe3O4纳米微粒嵌入TiO2纳米纤维内部可以赋予材料较强的磁性,使材料便于分离和重复利用.  相似文献   

8.
磁性Fe3O4微粒表面有机改性   总被引:23,自引:1,他引:23  
在分散聚合法制备复合磁性微球过程中,采用硅烷偶联剂KH 570对磁性Fe3O4微粒进行表面改性.红外光谱(FTIR)、光电子能谱(XPS)分析结果表明,偶联剂与磁性微粒表面以化学键形式结合.改性后,Fe3O4微粒与单体及其聚合物之间具有良好的亲和性,采用改性后的磁性微粒可以显著改善磁性微球的性能指标.  相似文献   

9.
汪鑫  闫凯  龚莹  刘瑞清  徐祖顺 《高分子学报》2014,(11):1547-1552
利用共沉淀法合成Fe3O4磁性纳米粒子,并使用油酸改性生成了粒径均一的油性纳米粒子.使用3-(甲基丙烯酰氧)丙基三甲氧基硅烷,聚乙二醇甲基丙烯酸酯以及荧光可聚合配合物Eu(AA)3Phen为原材料合成了含有稀土金属Eu的两亲性的聚合物为配体,以油性Fe3O4为核,采用配体交换反应制备水性的磁性荧光微粒.并通过核磁共振波谱仪、傅里叶红外光谱仪、透射电子显微镜、动态光散射粒径测试仪、X射线衍射仪、振动样品磁强计、荧光分光光度计、热重分析仪对该微粒进行形貌、结构、超顺磁性以及荧光性能的测试表征.测试结果表明,两亲性聚合物良好有效地包覆在了磁性纳米粒子表面,制得的含稀土磁性荧光微粒在水相中具有良好的分散性,粒径均一,其平均粒径仅为45 nm,室温下的饱和磁化强度为2.3 A·m2/kg,研究过程中测得微粒中的稀土Eu3+在594 nm和619 nm有明显的特征发射光谱.  相似文献   

10.
两亲磁性高分子微球的合成与表征   总被引:7,自引:0,他引:7  
在Fe3O4磁流体存在下 ,通过苯乙烯与聚氧乙烯大分子单体 (MPEO)分散共聚制备两亲磁性高分子微球 .研究了聚氧乙烯大分子单体对微球粒径的影响 .用扫描电子显微镜 (SEM)、原子力显微镜 (AFM)表征了磁性微球的粒径、表面形貌以及表面粗糙度 ,用傅立叶红外光谱 (FTIR)鉴定了共聚物的结构 .随着聚合物中聚氧乙烯大分子单体含量的增加 ,微球表面的粗糙度增加 ,通过改变共聚物中MPEO的含量 ,可以得到含有 0 4~ 3 5mg g羟值的两亲磁性高分子微球  相似文献   

11.
采用改进的Polyol合成法,以PEO-PPO-PEO为表面活性剂制备了链霉亲和素-异硫氰酸荧光素偶联的Fe3O4/Au纳米粒子;利用透射电镜和X射线衍射仪分析证实了Fe3O4/Au的核壳型纳米结构,确定了其粒径和分布;采用紫外-可见吸收光谱仪和荧光光谱仪测定了所制备的纳米粒子的光学活性和荧光特性,并采用振动样品磁强计(VSM)测量了其磁化率.结果表明,所制备的Fe3O4/Au纳米粒子具有光学活性和荧光特性,以及优异的磁性.  相似文献   

12.
采用一罐纳米乳液法,以聚乙二醇-聚丙二醇-聚乙二醇(PEO-PPO-PEO)三嵌段共聚物为表面活性剂,通过还原前驱体乙酰丙酮镍、乙酰丙酮铁(Ⅱ)和醋酸金,成功制备了NiFeAu纳米粒子.采用透射电镜和X射线衍射仪分析了NiFeAu纳米粒子的形貌和结构;采用傅立叶变换红外光谱仪分析了三嵌段共聚物在NiFeAu纳米颗粒表面的覆盖情况;采用紫外-可见吸收光谱仪和振动样品磁强计测试了纳米粒子的光学和磁学特性.结果表明,三嵌段共聚物成功地结合于NiFeAu纳米颗粒表面;所制备的纳米粒子粒径分布较窄、结晶性能良好,并兼具光学和磁学特性.  相似文献   

13.
以丙烯酸异丁酯(IBA)、甲基丙烯酸二甲氨乙酯(DMAEMA)、丙烯酸羟乙酯(HEA)作为聚合单体,利用种子微乳液聚合制备了一种具有核-壳结构的聚合物纳米胶粒P(DMAEMA-co-IBA)/P(IBA-co-HEA);采用红外光谱仪、动态激光光散射仪、透射电镜分析了所得胶粒的结构和形貌;将叶酸成功嵌入聚合物胶粒,得到直径约293nm的球形载药胶粒,利用药物体外释放测定了药物运载性能.结果表明,所制备的共聚物纳米胶粒呈球形,直径约275nm,粒径分布较窄,并具有核-壳结构;其对药物具有缓释性和pH响应性.  相似文献   

14.
A kind of cellulose magnetic nanoparticle with a core / shell structure has been prepared by ultrasonic irradiation. Cellulose acts as the shell while Fe3O4 magnetic nanoparticles take the role as the core. Magnetic force microscopy(MFM)with atomic force microscopy(AFM)measurement showed that the size of the magnetic nanoparticles is about 30-50 nm in diameter,while the Fe3O4 core is about 20-30 nm. FT-IR,XRD and MFM was used to provide the chemical and magnetic information of the nanoparticles. The MFM image showed that the nanoparticles separate very well with each other,indicating the cellulose shell produces a good prevention from the aggregation of the Fe3O4 particles. MFM studies also showed two magnetic nanoparticles can form particle-pairs,indicating a weak magneto-dipole interaction between magnetic nanoparticles. It is also found that the average sizes of magnetic nanoparticles have relation to the power of ultrasonic irradiation,and the possible mechanism is discussed.  相似文献   

15.
采用溶剂热法制备了单分散Fe3O4纳米粒子,以甲基丙烯酸(MAA)和二乙烯基苯(DVB)为聚合单体,在沉淀聚合过程中通过磁场诱导自组装制备了一维高磁响应性永久连接的Fe3O4/P(MAA-DVB)纳米链.采用扫描电镜(SEM),透射电镜(TEM),X射线衍射仪(XRD),热重分析(TGA)及振动样品磁强计(VSM)等对其形貌、磁含量和磁响应性等进行了分析表征.结果表明,该法制备的一维Fe3O4/P(MAA-DVB)纳米链的磁含量为91%时,其比饱和磁化强度为72emu/g.在外磁场存在条件下,一维Fe3O4/P(MAA-DVB)纳米链将按外界磁场的方向取向.此外,每个豆荚内的Fe3O4纳米粒子规则的排列在一条线上,并通过P(MAA-DVB)聚合物使其均匀分布.  相似文献   

16.
以Si-MCM-41为硬模板,利用介孔材料的吸附作用,将Fe3+和Ni 2+按一定比例定量吸附组装到介孔材料的孔壁上;然后通过程序升温在900℃条件下高温焙烧,并经氢氟酸处理,得到直径大约为3.0nm的中空铁氧体纳米管.分别利用傅立叶变换红外光谱仪、扫描电镜、透射电镜、X射线衍射仪分析了合成材料的结构、组成、形貌;采用振动样品磁强计测定了其磁性能.结果表明,合成的镍铁氧体纳米管具有良好的管状形貌,其结构与分子筛MCM-41的结构相似,并具有良好的磁学性能.这说明MCM-41分子筛孔道结构具有可复制性,本研究可望为制备具有适当长径比的一维纳米磁性材料打下良好基础.  相似文献   

17.
Bi2Fe4O9纳米粉体:水热法制备及表征   总被引:1,自引:1,他引:0  
Bi2Fe4O9 nanoparticles were prepared at low temperature via a facile, one-step hydrothermal synthesis process using iron(Ⅲ) nitrate nonahydrate(Fe(NO3)3·9H2O) and bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) as starting materials and sodium hydroxide (NaOH) as the precipitant and mineralizer. XRD results indicate that the as-prepared nanoparticles are pure Bi2Fe4O9. SEM images reveal that the as-prepared Bi2Fe4O9 nanoparticles have a sheet-like morphology. The Bi2Fe4O9 nanoparticles thus obtained are paramagnetic at room temperature as shown by magnetic measurements.  相似文献   

18.
王伟力  王桂清 《化学研究》2012,23(4):70-73,77
在常温下以硫酸铜(CuSO4.5H2O)为铜源,硫化钠(Na2S.9H2O)为硫源,六偏磷酸钠(NaPO3)6为稳定剂,辛基酚聚氧乙烯醚(OP-10)为表面活性剂,采用沉淀法成功合成了硫化铜纳米晶体;利用X射线粉末衍射仪和高分辨透射电镜分析了产物的晶体结构和形貌,考察了反应体系的pH、温度、反应物浓度、稳定剂用量等对产物组成和结构的影响.此外,利用紫外-可见光谱仪、荧光光谱仪及傅立叶转换红外光谱仪分析了产物的光学性质.结果表明,产物为纯六方相的硫化铜;其颗粒呈不规则球型、椭球型、棒状,平均粒径约为37nm.产物在200~230nm波长范围内对紫外光有较强的吸收;用383nm的光激发,分别在440nm和486nm出现两个荧光发射峰,与常规硫化铜相比发生明显的蓝移.此外,产物具有良好的红外光透过率;反应体系的pH对产物的带隙能Eg和光致发光强度有明显的影响.  相似文献   

19.
张佳美  闫瑞  刘小强 《化学研究》2014,(1):41-44,48
采用水热法制备TiO2纳米管(TNTs),然后以12-磷钨杂多酸(PTA)作为交联剂,运用光催化方法在TiO2纳米管表面负载金纳米颗粒(GNPs),从而得到新型复合纳米材料——TNTs-PTA-GNPs;借助傅立叶变换红外光谱仪,X射线衍射仪和透射电子显微镜分析了新型复合纳米材料的结构及形貌,并利用循环伏安法测试了其电化学性能.结果表明,GNPs均匀分布在TNTs表面,从而大幅度改善纳米材料的导电性;但复合纳米材料中无游离的金纳米颗粒.与此同时,TNTs-PTA-GNPs纳米材料具有良好的生物相容性,且可促进酶与电极之间的直接电子转移.  相似文献   

20.
由共沉淀法和Stober法制备了伯胺基功能化SiO2稳定的Fe3O4磁性纳米粒子Fe3O4@SiO2-NH2;Fe3O4@SiO2-NH2与二异氰酸酯及咪唑阳离子二醇、聚乙二醇的反应使其表面形成阳离子型聚氨酯稳定层;通过阳离子型聚氨酯与CdTe量子点表面修饰的巯基乙酸间的电荷相互作用,制备得到了Fe3O4/CdTe/聚氨酯纳米复合物.用X射线衍射(XRD)、红外吸收光谱(FTIR)、热重分析(TGA)、透射电子显微镜(TEM)、磁强计(VSM)、紫外吸收光谱(UV)、荧光发射光谱(PL)表征了该纳米复合物的结构与性能.结果表明,CdTe量子点均匀地分散在Fe3O4@SiO2磁性纳米粒子周围,所得纳米复合物在溶剂中分散均匀,不团聚,且具有超顺磁性,并保持了CdTe量子点的荧光性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号