首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We designed ring-in-ring planar resonator which is coupled with a straight waveguide to yield coupled-resonator-induced transparency (CRIT). The model shows an obvious effect which has a direct analogy with the phenomenon of the electromagnetically induced transparency in quantum systems. Based on this structure, a high sensitive optical gyroscope for measuring absolute rotation is proposed and analyzed. Its sensitivity scales directly with the group index whose can be reached to 102-104 orders of magnitude by using proper parameters.  相似文献   

2.
We study the optical-gain characteristics of a Si-based MQW laser, in which the active region has 20 Si0.15Ge0.621Sn0.229 quantum wells separated by 20 Si0.637Ge0.018Sn0.345 barriers. We reach a maximum optical gain of 2300 cm?1 with an estimated carrier concentration of 5·1018 cm?3, which is equivalent to the transparent current density equal to 0.5 kA/cm2. Furthermore, we discuss the optical confinement factor and modal gain. The modal gain depends sensitively on the number of the quantum wells (QWs), and this fact restricts the optical confinement factor. The modal gain of the model we proposed can reach 1500 cm?1 at the injection current density equal to 3 kA/cm2. We hope that our results show the possibility to obtain a Si-based near-infrared laser.  相似文献   

3.
We propose the precision measurement of both angular rotation and of the gradient magnetic of a field based on the use of matter wave interferometers with soliton states of a Bose-Einstein condensate (BEC). We consider the formation of these soliton states in a BEC with negative scattering length by an optical lattice produced by two counterpropagating laser beams. We determine the parameters of both the initial condensate and the optical radiation necessary for the formation of coherent solitons. We demonstrate that this interferometer can be used to measure magnetic field gradient with a precision of 10-2 pT/cm. Our calculations show that the sensitivity of a gyroscope based on a ring, two-port matter wave interferometer can achieve 2.6×10-7 rad s-1. The precision of this method is more than ten times greater than in that of rotating interferometer with cooled atoms.  相似文献   

4.
The optical properties of trivalent neodymium embedded in a P2O5–Al2O3–Na2O–K2O phosphate glass system, synthesized by the fusion method, are studied. Absorption, luminescence, lifetime, and Raman spectroscopy measurements were performed and the Judd–Ofelt theory was applied to determine optical parameters such as the quantum efficiency and the stimulated emission cross section of the Nd3+-doped glass system. This structure has high quantum efficiency at low Nd3+ concentrations, comparable to the efficiency of a commercial YAG:Nd3+ crystal. We discuss the mechanisms responsible for the high quantum efficiency observed in the proposed phosphate glass system.  相似文献   

5.
We apply quantum and semiclassical theories to differential optical collisions Na(32S1/2) + Kr + Na(32P1/2,3/2) + Kr. Our results provide a basis to analyze recent experiments in which for the first time optical collisions were investigated with angular resolution under crossed-beam conditions. A characteristic feature of the differential cross sections is the pronounced oscillatory structure due to interferences of different Condon paths. These Stueckelberg oscillations form an extremely sensitive probe of the collisional dynamics and of the molecular interactions. We demonstrate perspectives to determine geometric properties of the collision complex by excitation with polarized light. By final state analysis nonadiabatic (spin-orbit, rotational) interactions can be studied with complete control of the path. In summary it is shown that the method of differential detection of optical collisions opens a variety of new accesses to atomic and molecular subcollisions. Received: 30 July 1997 / Received in final form: 5 November 1997 / Accepted: 8 January 1998  相似文献   

6.
Periodically nanopatterned Si structures have been prepared by using a nanosphere lithography technique. The formed nanopatterned structures exhibit good anti‐reflection and enhanced optical absorption characteristics. The mean surface reflectance weighted by AM1.5 solar spectrum (300–1200 nm) is as low as 5%. By depositing Si quantum dot/SiO2 multilayers (MLs) on the nanopatterned Si substrate, the optical absorption is higher than 90%, which is significantly improved compared with the same multilayers deposited on flat Si substrate. Furthermore, the prototype n‐Si/Si quantum dot/SiO2 MLs/p‐Si heterojunction solar cells has been fabricated, and it is found that the external quantum efficiency is obviously enhanced for nanopatterned cell in a wide spectral range compared with the flat cell. The corresponding short‐circuit current density is increased from 25.5 mA cm?2 for flat cell to 29.0 mA cm?2 for nano‐patterned one. The improvement of cell performance can be attributed both to the reduced light loss and the down‐shifting effect of Si quantum dots/SiO2 MLs by forming periodically nanopatterned structures.  相似文献   

7.
We show the formation of ultraslow bright and dark optical solitons in a cascade-type three-level system of GaAs/AlGaAs multiple quantum wells (MQWs) structure based on the biexciton coherence in the transient optical response, and study analytically and numerically with Maxwell–Schrödinger equations. The calculated velocity of bright and dark optical solitons are Vg = 2.7 × 104 ms? 1 and Vg = 8.91 × 104 ms? 1, respectively. Such investigation of ultraslow optical solitons in MQWs may provide practical applications such as high-fidelity optical delay lines and optical buffers in semiconductor quantum wells structure, because of its flexible design.  相似文献   

8.
The interaction of a sequence of two identical ultrashort laser pulses with an atomic system results in quantum interferences as in Ramsey fringes experiments. These interferences allow achievement of temporal coherent control of the excitation probability. We present the results of a temporal coherent control experiment on two different atomic systems: one-photon absorption in K (4s-4p) and two-photon absorption in Cs (6s-7d). In K, the quantum interferences between the two excitation paths associated with the laser pulses are revealed through rapid oscillations of the excitation probability as a function of the time delay between the two pulses. These oscillations take place at the transition frequency (period T = 2.56 fs). The interferences are modulated by beats (at about 580 fs) resulting from the doublet structure of the excited state (4p (2 P 1/2 , 2 P 3/2 )). Three complementary interpretations of this experiment are presented: in terms of beats of quantum interferences, of variation in the spectrum intensity, and of wave packet interferences. Whenever the two laser pulses are temporally overlapped, optical interferences are superimposed on to the quantum interferences. The distinction between these two types of interference is clearly revealed in the two-photon excitation scheme performed on Cs (6s-7d (2 D 3/2 , 2 D 5/2 )) because quantum interferences occur at twice the frequency of the optical interferences. Received: 30 December 1997 / Revised: 28 February 1998 / Accepted: 4 March 1998  相似文献   

9.
Chirped laser dispersion spectroscopy (CLaDS) has been introduced recently as a technique that performs molecular detection based on measurement of optical dispersion. In this paper, a new detection scheme based on chirp modulation (CM) and subsequent phase-sensitive detection is described. CM-CLaDS inherits the full advantages of conventional CLaDS and additionally overcomes some of its limitations. A prototype CM-CLaDS instrument has been developed and characterized in laboratory conditions. The system is based on a distributed feedback quantum cascade laser which operates around 4.52???m and can probe the most intense nitrous oxide (N2O) ro-vibrational transitions. Preliminary performance tests are presented and provide a path/bandwidth normalized minimum N2O detection limit below 100?ppbv?m/Hz1/2.  相似文献   

10.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect.  相似文献   

11.
The possible deep laser cooling of 24Mg atoms in a deep optical lattice in the presence of an additional pumping field resonant to the narrow 3s3s1S0 → 3s3p3P1 (λ = 457 nm) optical transition is studied. Two quantum models of the laser cooling of atoms in the optical trap are compared. One is based on the direct numerical solution to the kinetic quantum equation for an atomic density matrix; it considers both optical pumping and quantum recoil effects during interaction between the atoms and field photons. The second, simplified model is based on decomposing the states of the atoms over the levels of vibration in the optical trap and analyzing the evolution of these states. The comparison allows derivation of optical field parameters (pumping field intensity and detuning) that ensure cooling of the atoms to minimal energies. The conditions for fast laser cooling in an optical trap are found.  相似文献   

12.
陈坤  陈树新  吴德伟  杨春燕  吴昊 《物理学报》2016,65(5):54203-054203
利用量子技术增强Sagnac效应提高陀螺输出精度具有重要的研究意义, 是实现全自主导航的重要途径. 以相干态激光作为输入光源的光学陀螺因真空零点波动使其输出精度限制于散粒噪声极限而难以提高. 为减小真空波动的影响, 提出在激光输入的分束器的另一输入端输入压缩真空光并结合平衡零拍探测技术的方法增强Sagnac效应. 理论分析表明Sagnac效应性能得到有效提升: 干涉输出的灵敏度检测极限和动态范围均随着压缩程度的增加而呈指数级增长. 该方法只需对经典光学陀螺做少量改动就可实现, 是提高光学陀螺输出精度的一种新方法.  相似文献   

13.
The influence of layer-by-layer temperature and substrate rotation on the optical property and uniformity of self-assembled InAs/In0.2Ga0.8As/GaAs quantum dots (QDs) gown with an As2 source was investigated. An improvement in the optical property of QDs was obtained by the precise control and optimization of growth temperature utilized for each layer, i.e., InAs QDs, InGaAs quantum wells, GaAs barriers and AlGaAs layers, respectively. By using a substrate rotation, the QD density increased from ∼1.4×1010 to ∼3.2×1010 cm−2 and its size also slightly increased, indicating a good quality of QDs. It is found that the use of an appropriate substrate rotation during growth improves the room-temperature (RT) optical property and uniformity of QDs across the wafer. For the QD sample with a substrate rotation of 6 rpm, the RT photoluminescence (PL) intensity is much higher and the standard deviation of RT-PL full-width at half-maximum is decreased by 35% compared to that grown without substrate rotation.  相似文献   

14.
A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II–VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n (n?=?3, 6, 9 which are in the size range of ~?0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.  相似文献   

15.
A systematic method to evaluate potentials of Ni2+-doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa2O4 and LiGa5O8 at room temperature. Transparent glass-ceramics containing Ni2+:LiGa5O8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media.  相似文献   

16.
We experimentally realize a quantum-memory protocol based on retrieval of silenced echo (ROSE) in Tm3+:Y3Al5O12 crystal in an orthogonal geometry of the signal and control light fields. The silenced echo signal revival efficiency of ~13% with 36 μs storage time is demonstrated. To achieve that we implemented a high-precision atomic coherence control via amplitude- and phase-modulated laser pulses. We also discuss capabilities of this configuration, ways to increase quantum efficiency and to combine it with a single-mode optical cavity.  相似文献   

17.
The linear and nonlinear intersubband optical absorptions in AlxlGa1-xlAs/GaAs/Alxr Ga1-xrAs asymmetric rectangular quantum well are studied within the framework of the density matrix formalism. We have calculated the electron energy levels and the envelope wave functions using the effective mass approach. In addition, we have obtained an expression for saturation intensity. It is shown that the parameters such as asymmetry and width of potential well not only shift the peak positions in absorption spectrum but also considerably modify their height. These results suggest that the absorption process can be easily controlled by the structure parameters of an asymmetric rectangular quantum well. Also, the incident optical intensity has a great effect on the total absorption spectrum. We have seen that the absorption peak is reduced by half when the optical intensity is approximately 0.8 MW/cm2 for well width L=90 ? and β=0.5. Moreover, it is seen that the saturation intensity is quite sensitive to the structure parameters of an asymmetric rectangular quantum well. Thus, the results presented here can be useful for electro-optical modulators and photodetectors in the infrared region.  相似文献   

18.
We describe an optical diagnostics module and the instrumental and methodological features of ultrahigh vacuum experiments investigating the optical characteristics of condensed media in the short-wavelength (hv ~ 3.5–25 eV) range of the spectrum of probing synchrotron radiation. We give a brief presentation of the results of an experimental determination of the spectral dependence of the luminescence quantum yield and the luminescence excitation spectrum of ablatable polymer dielectrics on the Kurchatov synchrotron radiation source at values of the probing radiation power density (I 0 ~ 1012 photons/cm2∙sec) that are below threshold for extended surface vaporization and a surface temperature of the condensed targets equal to 77–300 K.  相似文献   

19.
利用静电自组装技术,以生物大分子材料壳聚糖杂化处理具有稳定结构的CdSe/ZnS核/壳量子点,形成复合多层薄膜. 与薄膜的吸收谱线比较,在375nm飞秒激光激发下测量的量子点的光致发光谱存在Stokes位移. 采用Z扫描技术,利用790nm飞秒激光研究了其三阶非线性吸收和折射特性,发现饱和吸收信号来自CdSe/ZnS量子点,而自聚焦的折射信号则部分来自壳聚糖. 测出多层膜的三阶非线性系数分别是β=6.5×10-6cm/W,n2=1.5×10-10cm2/W. 关键词: CdSe/ZnS量子点 非线性性能 光致发光谱  相似文献   

20.
We studied the two-photon absorption coefficient (β) for cadmium diphosphide (CdP2) single crystals in the tetragonal modification vs. the polarization azimuth (φ) of the incident light for intensities close to the optical breakdown (or optical damage) threshold for the crystal (11 MW/cm2). We have established that the value of βmax = 0.16 cm/MW is reached for φ = 0, i.e., for the ordinary wave. At the lasing frequency of a ruby laser, β|| = 2.13, which suggests anisotropy of the two-photon absorption in the studied crystals. These dependences are needed for design and fabrication of quantum electronics and nonlinear optics elements whose operation is based on the use of the two-photon absorption effect for high radiation fluxes. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 117–121, January–February, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号