首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 642 毫秒
1.
LiCoO2梯度包覆LiNi0.96Co0.04O2电极材料的电化学性能   总被引:2,自引:0,他引:2  
镍钴酸锂(LiNi0.8Co0.2O2)与目前商业用锂离子电池正极材料钴酸锂(LiCoO2)相比,具有成本低、实际比容量高和环境友好等优势。但LiNi0.8Co0.2O2的充放循环性能还有待提高,对其进行阳离子掺杂或表面修饰可以改善其电化学性能,这方面的研究已经成为热点。Fey等人[1]用溶胶凝胶法制  相似文献   

2.
锂离子电池具有比能量高、功率大、使用寿命长、无记忆效应、性能价格比高等优点,从而成为可充式电源的主要选择对象.锰由于资源丰富、价廉、环境友好等优点,使锰酸锂(LiMn2O4)成为最有希望取代钴酸锂的正极材料.但锰酸锂的放电容量相对较低,结构欠稳定,容量衰减严重,作为正极材料还无法与钴酸锂相比,近年来做了大量的研究工作以改善它的电化学性能[1~6].最近Youngjoon Shin等研究发现[7]用少量的Li与Ni共同替代LiMn2O4中的Mn得到的LiMn2-2yLiyNiyO4的电化学性能要优于单元素替代的LiMn2-xMxO4(M=Li,Cr,Fe,Co,Ni)的电化学性能.  相似文献   

3.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

4.
LiCoO2对LiMn2O4改性过程的研究   总被引:4,自引:0,他引:4  
在LiCoO2、LiMn2O4、LiNiO2这三种锂离子电池正极材料中,尖晶石LiMn2O4由于具有价廉、对环境友好、使用安全的显著优点,被普遍认为是最有希望的新型正极材料。但该材料在高温下较快的容量衰减制约了其规模应用[1~3]。为改善LiMn2O4的高温性能,各国学者普遍采用掺杂法,即在制备L  相似文献   

5.
许惠  钟辉 《无机化学学报》2006,22(10):1761-1765
研究了两种不同前驱体Ni(OH)2对LiCo0.3Ni0.7O2锂离子电池正极材料的结构与电化学性能的影响,并用XRD、SEM及电性能测试考察了材料的结构、形貌与电化学性能。结果表明,前驱体Ni(OH)2的形貌、结晶形态对LiCo0.3Ni0.7O2正极材料的性能有极大的影响。与目前镍酸锂合成需高密度球形镍前驱体Ni(OH)2认识不同,本文发现呈枝晶网络状结构、表面蓬松、比表面积高和振实密度低的前驱体Ni(OH)2具有较高的化学活性,可有效抑制产物LiCo0.3Ni0.7O2正极材料中阳离子混排产物的生成。由其制备的目标正极材料LiCo0.3Ni0.7O2显示出较优的电化学性能,首次放电容量为175 mAh·g-1,首次放电效率为93.9%,40次循环容量保持率为94.8%,显示较好的循环稳定性。  相似文献   

6.
LiFePO4在饱和LiNO3溶液中的锂化行为   总被引:1,自引:0,他引:1  
锂离子电池是目前应用最广泛的二次电池,均利用有机电解液。然而,有机体系锂离子电池存在易燃、易爆的安全隐患,限制了其使用范围。水溶液锂离子电池作为一类新型的二次电池[1 ̄10],使用水溶液电解液代替有机电解液,消除了因有机电解液与电极材料反应形成枝晶可能造成的燃烧、爆炸等安全隐患,使其在低电压电池如铅酸电池、碱锰电池等领域的应用有很大的竞争潜力[10]。目前,大量研究集中在选择合适的电极材料来组装水溶液锂离子电池,文献报道的水溶液锂离子电池正极材料主要有LiMnO4[1 ̄9]、LiNi1-xCoO2[10],但是LiMnO4在循环约20次后容…  相似文献   

7.
>为获得综合性能更好的锂离子二次电池正极材料, 分析了Co掺杂对LixNiO2电化学性能的影响. 采用密度泛函DFT理论对LixNiO2和LixNi0.5Co0.5O2的平均放电电压和态密度进行了计算. 同时, 用共沉淀法制备了LixNiO2和LixNi0.5Co0.5O2锂离子二次电池正极材料, 并对其进行了XRD结构分析和恒流充放电测试. 实验和计算结果表明: 随锂离子嵌入正极(电池放电), 电池的电压逐渐降低, 材料的态密度峰向低能量方向移动; 与LixNiO2相比, LixNi0.5Co0.5O2的电压平台相对较高(当0.25≤x≤0.5), 而且在Li嵌/脱时, LixNi0.5Co0.5O2的结构变化相对较小; Co离子的掺入, 减小了NiO6八面体的畸变度, 使材料的电化学稳定性得以提高. 在钴掺杂镍酸锂体系中, NiO6和CoO6具有相互的稳定作用.  相似文献   

8.
尖晶石LiMn2O4的改性研究   总被引:4,自引:0,他引:4  
由于资源丰富、价格便宜、易制备、对环境无污染、可回收利用等优点,尖晶石型LiMn2O4成为锂离子二次电池中最有希望的正极材料[1~3]。然而,在高电压充、放电条件下,由于电极中锰的溶解和Jahn鄄Teller效应的发生,会造成LiMn2O4容量迅速衰减[4~6]。为了改善LiMn2O4的电化学性能,研究者主要通过优化合成条件及合成方法来控制产品的粒径分布与形貌,以利于锂离子的脱、嵌[7,8];用掺杂的方法以稳定其结构,抑制Jahn鄄Teller效应的发生[9,10];用表面修饰的方式来减少活性物质与电解液的直接接触从而降低Mn的溶解[11,12]。掺杂方面,Co3 不仅有…  相似文献   

9.
0引言为解决目前日益严重的汽车尾气排放对城市空气造成污染问题,作为绿色能源的锂离子电池已成为动力电池的首选对象。国际上,高容量、大功率锂离子电池早于1995年已开始研制。1996年,我国天津电源研究所也进行了大容量锂离子蓄电池及电池组的探索[1]。目前,锂离子电池的正极材料是制约其大规模推广应用的关键。现研究的正极材料主要包括具有层状结构的LiCoO2,LiN iO2和LiM nO2及具有尖晶石结构的LiM n2O4等。其中LiC oO2作为目前唯一已经商业化的正极材料具有理论容量高、可循环性能好等优点,但因Co资源的相对缺乏导致其价格高昂。…  相似文献   

10.
电解Co-Ni-Mn合金制备LiCo1/3Ni1/3Mn1/3正极材料   总被引:1,自引:0,他引:1  
叶茂  周震  卞锡奎  阎杰 《无机化学学报》2006,22(11):2005-2010
由Co-Ni-Mn合金出发,采用电解方法合成了含3种过渡金属元素的前驱物,再利用该前驱物制备了锂离子二次电池正极材料LiCo1/3Ni1/3Mn1/3。XRD测试结果表明通过该方法制备的正极材料具有较好的层状结构,SEM测试则显示材料由规则形状的1 μm左右颗粒组成。通过XPS实验证明Co、Ni、Mn 3种过渡金属元素在该材料中的价态分别为+3,+2,+4。采用循环伏安法对材料的电化学行为进行了研究,表明该材料具有较好的充放电可逆性。该材料在150 mA·g-1电流下经过50周的恒电流充放循环后容量仍能保持在160 mAh·g-1。  相似文献   

11.
陈宏浩  詹晖  朱先军  周运鸿 《化学学报》2005,63(11):1028-1032
以一种新型的软化学方法——流变相法, 成功地合成了锂离子电池正极材料LiNi0.85Co0.15O2. 将在600~850 ℃氧气氛下处理6 h后得到的LiNi1-yCoyO2 (y=0.10, 0.15, 0.20, 0.25), 进行X射线粉末衍射(XRD)与电化学测试. 测试结果表明, 流变相前体经过800 ℃烧结后合成的LiNi0.85Co0.15O2晶胞参数a=0.2866 nm, c=1.4193 nm及晶胞体积V=0.1010 nm3, 以0.1 C倍率在3.0~4.3 V (vs. Li/Li)放电时, 首次放电容量可以达到198.2 mAh/g, 20次循环后, 其放电容量仍在174 mAh/g以上.  相似文献   

12.
A facile method has been developed to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials. The sample was characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). Electrochemical tests show that the cycling stability of LiNi0.8Co0.2O2 at room temperature is effectively improved by Al2O3 coating. The differential scanning calorimetry (DSC) and high temperature (60 °C) cycling tests indicate that Al2O3 coating can also improve the thermal stability of LiNi0.8Co0.2O2, which is attributed to that the coating layer can protect the LiNi0.8Co0.2O2 particles from reacting with the electrolyte.  相似文献   

13.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

14.
Cathode materials Li[CoxMn1−x]O2 for lithium secondary batteries have been prepared by a new route—precursor method of layered double hydroxides (LDHs). In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with mass spectrometry (TG-MS) were used to monitor the structural transformation during the reaction of CoMn LDHs and LiOH·H2O: firstly the layered structure of LDHs transformed to an intermediate phase with spinel structure; then the distortion of the structure occurred with the intercalation of Li+ into the lattice, resulting in the formation of layered Li[CoxMn1−x]O2 with α-NaFeO2 structure. Extended X-ray absorption fine structure (EXAFS) data showed that the Co-O bonding length and the coordination number of Co were close to those of Mn in Li[CoxMn1−x]O2, which indicates that the local environments of the transitional metals are rather similar. X-ray photoelectron spectroscopy (XPS) was used to measure the oxidation state of Co and Mn. The influences of Co/Mn ratio on both the structure and electrochemical property of Li[CoxMn1−x]O2 have been investigated by XRD and electrochemical tests. It has been found that the products synthesized by the precursor method demonstrated a rather stable cycling behavior, with a reversible capacity of 122.5 mAh g−1 for the layered material Li[Co0.80Mn0.20]O2.  相似文献   

15.
LiNi(1/3)Mn(1/3)Co(1/3)O2具有很高的理论比容量,但是三元正极材料在高电压下长循环时,其表面结构发生较大的衰退,导致电池的循环性能和倍率性能变差。本文采用耐高电压且结构稳定的富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2可以有效改善材料的电化学性能。通过XRD、SEM、XPS和TEM等手段对包覆后的材料进行分析,证实了在LiNi(1/3)Mn(1/3)Co(1/3)O2的表面形成了10nm厚的均匀Li4Mn5O(12)的包覆层;在循环100圈后,包覆后的LiNi(1/3)Mn(1/3)Co(1/3)O2仍具有179.5m Ah/g的放电比容量和88.6%容量保持率,明显高于未包覆的LiNi(1/3)Mn(1/3)Co(1/3)O2的78.3%容量保持率。因此,利用富锂尖晶石Li4Mn5O(12)包覆LiNi(1/3)Mn(1/3)Co(1/3)O2为实现更高能量密度的锂离子电池提供了新的途径。  相似文献   

16.
李强*  赵辉  江瑞  郭力帆 《物理化学学报》2012,28(9):2065-2070
采用甘氨酸-硝酸盐法合成了中温固体氧化物燃料电池阴极材料La1.6Sr0.4Ni1-xCuxO4 (x=0.2, 0.4, 0.6,0.8), 利用X射线衍射(XRD)和扫描电子显微镜(SEM)对其结构和微观形貌进行了表征. 结果表明, 该阴极材料与固体电解质Ce0.9Gd0.1O1.95(CGO)在1000 °C烧结时不发生化学反应, 且烧结4 h 后, 二者之间可形成良好的接触界面. 利用电化学交流阻抗谱技术对阴极材料的电化学性能进行研究, 结果显示, 当Cu离子掺杂量(x)为0.6 时, La1.6Sr0.4Ni0.4Cu0.6O4阴极具有最小的极化电阻, 在空气中当测试温度为750 °C时, 极化电阻为0.35 Ω·cm2. 在不同氧分压条件下电化学阻抗谱分析结果表明, 电极上的两个氧还原反应主要包含氧离子从三相界面向电解质CGO 转移的过程和电荷的迁移过程, 其中电荷的迁移过程为电极反应的速率控制步骤.La1.6Sr0.4Ni0.4Cu0.6O4电极在空气中700 °C和阴极电流密度为45 mA·cm-2时, 阴极过电位为45 mV. 本研究的初步结果表明La1.6Sr0.4Ni1-xCuxO4材料是一种电化学性能较为优良的新型中温固体氧化物燃料电池(IT-SOFC)阴极材料.  相似文献   

17.
LiNi0.9-x Co0.1Sn x O2 (x = 0.00, 0.02, and 0.03) were synthesized via the rheological phase reaction method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The sample of LiNi0.9-x Co0.1Sn x O2 (x = 0.02) not only shows good cycle performance but also exhibits an excellent discharge capacity of 188 mAh/g in the first cycle at a current density of 100 mA/g in the voltage range of 3.0–4.3 V. The tin doping results in reducing the resistance and increasing conductivity of LiNi0.9-x Co0.1Sn x O2. This composite oxide is promising as cathode material for lithium-ion battery.  相似文献   

18.
采用氨蒸发诱导法成功制备出纳米结构LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、能量分散谱(EDS)和比表面测试等表征手段及恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能. 研究表明该方法制备出的材料具有良好的α-NaFeO2层状结构,阳离子混排程度低. 纳米片交错堆积而成核桃仁状形貌,片与片之间形成许多纳米孔,而且纳米片的侧面属于{010}活性面,能够提供较多的锂离子的脱嵌通道. 在室温下及3.0-4.6 V充放电范围内,该材料在电流密度为0.5C、1C、3C、5C和10C时放电比容量分别为172.90、153.95、147.09、142.16 和131.23mAh·g-1. 说明其具有优异的电化学性能,非常有潜力用于动力汽车等高功率密度锂离子电池中.  相似文献   

19.
以氟化锂为氟源,通过高温固相法合成了F掺杂的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2。采用X射线衍射仪(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)和电化学测试等手段研究F影响LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2结构和性能的微观机制。结果表明:适量F掺杂可以提高正极材料的放电比容量,改善其倍率性、循环性和热稳定性。当F掺杂量(物质的量分数)为1.5%时,材料的综合电化学性能最优,初始放电比容量(0.2C)和50周循环容量保持率(1C)分别由原始的174.0 mAh·g~(-1)(78.7%)提高到178.6 mAh·g~(-1)(85.7%)。LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2材料性能的改善可归因于F能够增强过渡金属层、锂层与氧层之间的结合力,提高材料的结构稳定性。此外,F掺杂还有利于降低电化学反应中的界面电阻和电荷转移阻抗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号