首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ne-HCl势能面和振转光谱的理论研究   总被引:5,自引:0,他引:5  
利用量子化学计算方法CCSD(T)和大基组aug-cc-pVTZ加键函数3s3p2d对Ne-HCl体系的分子间势能面进行了理论研究.结果表明,势能面上有两个势阱,分别对应于线性Ne-ClH和Ne-HCl构型.通过精确求解核运动方程发现,该从头算势能面分别支持5个(对Ne-HCl)和7个(Ne-DCl)振动束缚态.计算得到的振转跃迁频率与实值值吻合.  相似文献   

2.
We have measured the OH- and OD-stretching fundamental and overtone spectra of phenol and its deuterated isotopomers under jet-cooled conditions using nonresonant ionization detection spectroscopy and vapor-phase infrared (IR) and near-infrared (NIR) spectra at room temperature using conventional and photoacoustic spectroscopy. The OH- and OD-stretching bands in the jet-cooled spectra are about 1-10 cm(-1) wide and generally show a few Lorentzian shaped peaks. The bands in the room-temperature spectra have widths of 20-30 cm(-1) and display clear rotational profiles. The band profiles in the jet-cooled spectra arise mostly from nonstatistical intramolecular vibrational redistribution (IVR) with specific coupling to "doorway" states, which are likely to involve CH- and CD-stretching vibrations. The transition dipole moment that determines the rotational structure is found to rotate significantly from the fundamental to the third overtone and is not directed along the OH(D) bond. We use these calculated transition dipole moments to simulate the rotational structure. We determine the rotational temperature in the jet-cooled spectra to be about 0.5 K. Anharmonic oscillator local mode calculations of frequencies and intensities of the OH- and OD-stretching transitions are compared with our measured results. The calculated intensities are in good agreement with the absolute intensities obtained from conventional spectroscopy and with the relative intensities obtained from the room-temperature laser spectroscopy.  相似文献   

3.
The rotationally resolved Fourier transform infrared (FTIR) spectrum of the nu(s) HCl and DCl stretching bands for the hydrogen bonded complex H2S-HCl and its isotopomer D2S-DCl have been observed in a supersonic jet at 0.02 cm(-1) resolution. In the same experimental conditions, two additional bands observed without rotational structure in the HCl range of the dimer have been assigned to the cyclic trimer H2S-(HCl)(2). The multidimensional coupling picture involving the donor stretch mode nu(s) and low frequency intermolecular modes already evidenced in several medium strength hydrogen bonded complexes is beautifully confirmed by the observation of completely separated hot band progressions in the 198 K cell spectrum of both dimers. Based on our anharmonic adiabatic approach for the treatment of the coupled vibrations, absolute vibrational frequencies, diagonal and off-diagonal anharmonicities as well as rovibrational coupling constants obtained from analyses of several 2-D subspaces at MP2 and CCSD(T) level are in excellent agreement with spectroscopic results. In the case of small light complexes, the combination of elevated rotational constants and a negligible contribution of intramolecular vibrational redistribution (IVR) improve the reliability of predissociation lifetime measurements, estimated to 180 ps for H2S-HCl and above 200 ps for D2S-DCl.  相似文献   

4.
Rotational dynamics of solvated carbon dioxide (CO(2)) has been studied. The infrared absorption band of the antisymmetric stretch mode in acetonitrile is found to show a non-Lorentzian band shape, suggesting a non-exponential decay of the vibrational and/or rotational correlation functions. A combined method of a molecular dynamics (MD) simulation and a quantum chemical calculation well reproduces the observed band shape. The analysis suggests that the band broadening is almost purely rotational, while the contribution from the vibrational dephasing is negligibly small. The non-exponential rotational correlation decay can be explained by a simple rotor model simulation, which can treat large angle rotations of a relatively small molecule. A polarized Raman study of the symmetric stretch mode in acetonitrile gives a rotational bandwidth consistent with that obtained from the infrared analysis. A sub-picosecond time-resolved infrared absorption anisotropy measurement of the antisymmetric stretch mode in ethanol also gives a decay rate that is consistent with the observed rotational bandwidths.  相似文献   

5.
Photodissociation of jet-cooled vibrationally excited 1-butyne, C(2)H(5)C[Triple Bond]C[Single Bond]H, coupled with mass spectrometric detection of H photofragments, facilitated measurements of action spectra and Doppler profiles, expressing the yield of the ensuing fragments versus the vibrational excitation and UV probe lasers, respectively. Both the action spectra and the simultaneously measured room temperature photoacoustic spectra in the 2nu(1), 3nu(1), and 4nu(1) C[Single Bond]H acetylenic stretch regions exhibit unresolved rotational envelopes with significant narrowing of the former due to temperature-related change in the rotational structure. The narrowing of the action spectrum in the 3nu(1) region exposed a resonance splitting, implying intramolecular vibrational energy redistribution (IVR) time of approximately 1 ps. Asymmetric rotor simulation of the band contours provided the rotational constants and estimates for the homogeneous broadening arising from IVR to the bath vibrational states. The homogenous linewidth of 4nu(1) is anomalously narrower than that of 2nu(1) and 3nu(1), indicating a longer lived 4nu(1) state despite the increasing background state density, suggestive of a lack of low-order resonances or of mode-specific coupling with the bath states. The Doppler profiles indicate that the H photofragments are released with low average translational energies, pointing to an indirect dissociation process occurring after internal conversion (IC) to the ground electronic state or after IC and isomerization to butadiene.  相似文献   

6.
The CN photofragments from the photodissociation of NCCN at 193 nm have been measured by high-resolution transient absorption spectroscopy. Doppler-broadened profiles of isolated rotational lines in the 2-0 and 3–1 vibrational bands of the CN A---X transition were observed under collisionless conditions with a tunable, single-frequency Ti:sapphire ring laser. Analysis of the Dopple profiles reveals a vector correlation between the translation and rotation of CN photoproducts, with the angular momentum of the high rotational states increasingly perpendicular to the recoil velocity. After correction for vector correlations, the laboratory-frame scalar speed distribution of state-selected photoproducts can be determined. The mean squared laboratory velocity is directly related to the average internal energy of coincident CN fragments. The wings of the Doppler profiles indicate that the available energy for a pair of ground state CN photoproducts following 193 nm dissociation of NCCN at 295 K is 5300±150 cm−1, which includes the average vibrational energy of the parent molecules selected by the photolysis laser. Phase space theory with an optimized available energy of 5300 cm−1 produces laboratory speed distributions that are in qualitatively reasonable agreement with the kinetic energy measurements, but overestimate the total internal energy of the photofragments. The measurements are good enough to warrant comparison with more sophisticated models of unimolecular decomposition.  相似文献   

7.
In a discharged supersonic jet of acetonitrile and carbon disulfide, we have for the first time observed an electronic transition of the NC(3)S radical using laser-induced fluorescence (LIF) spectroscopy. A progression originating from the C-S stretching mode of the upper electronic state appears in the excitation spectrum. Each band of the progression has a polyad structure due to anharmonic resonances with even overtones of bending modes. Rotationally resolved spectra have been observed by high-resolution laser scans, and the electronic transition is assigned to A 2Pii-X 2Pii. For the vibronic origin band, the position and the effective rotational constant of the upper level have been determined to be 21 553.874(1) and 0.046 689(4) cm(-1), respectively. The dispersed fluorescence spectrum from the zero vibrational level of A 2Pi3/2 has also been observed; its vibrational structure is similar to that of the LIF excitation spectrum, showing a prominent C-S stretching progression with polyad structures. The vibrational frequencies of the C-S stretching mode in the ground and excited electronic states are determined to be 550 and 520 cm(-1), respectively. Fluorescence decay profiles have been measured for several vibronic levels of the A state.  相似文献   

8.
Vibrationally mediated photodissociation and room-temperature photoacoustic (PA) spectroscopy have been used for obtaining action (monitoring the yield of H photofragments) and absorption spectra of the second (3nu(1)) and third (4nu(1)) C-H acetylenic stretches overtone regions in propyne. The band contours appearing in these regions seem mostly regular even though they are perturbed, as expressed by the origin shifts in different K components, splitting of the K structure, and splitting due to resonances between neighboring states. Symmetric rotor simulations of the band contours of the PA and action spectra allowed extraction of the molecular parameters and rough estimates for the homogeneous broadening arising from energy flow to the bath vibrational states. We particularly benefited from the reduced congestion in the jet-cooled action spectra and their simulations, which enabled observation of yet unknown features in the vicinity of the 3nu(1) and 4nu(1) states. Particularly, the emergence of the new state in the 3nu(1) region was confirmed by the action spectra monitored at several differing jet temperatures, suggesting that it is a dark state in IR vibrational excitation that becomes brighter in UV excitation to the upper electronic state. The monitored and Gaussian-fitted Doppler profiles point to the release of H photofragments with low average translational energies, attributed to an indirect dissociation process occurring after internal conversion to the ground electronic state and isomerization to allene.  相似文献   

9.
We investigate coherent Rayleigh-Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the used pump laser. Experiments were done for both polar and nonpolar gases and the bulk viscosity was obtained from the spectra using the Tenti S6 model. Results are compared to simple classical kinetic models of molecules with internal degrees of freedom. At the extremely high (gigahertz) frequencies of our experiment, most internal vibrational modes remain frozen and the bulk viscosity is dominated by the rotational degrees of freedom. Our measurements show that the molecular dipole moments have unexpectedly little influence on the bulk viscosity at room temperature and moderate pressure.  相似文献   

10.
We report infrared and electronic absorption spectra of mono, di, tri and tetra ethylene glycol (EG) in gas phase, their cation and anion and in water solvent using density functional theory calculations at B3LYP/TZVP level. Structural paramaters, rotational and centrifugal distortional constants and dipole moments are also reported. A siginificant shifts in vibrational frequencies and peaks in electronic absorption spectra have been observed upon ionization of mono, di, tri and tetra ethylene glycols. We have also obtained experimental vibrational spectrum of monoethylene glycol. Vibrational frequencies of mono ethylene glycol from theory and experiment are compared. We have used integral equation formalism polarizable continuum model (IEFPCM) model to study the influence of water solvent on vibrational frequencies of neutral mono, di, tri and tetra ethylene glycol. Electronic absorption spectra for these molecules have been obtained using Time dependent density functional theory (TDDFT).  相似文献   

11.
A practical computational method is discussed for obtaining the rotational–vibrational molecular state densities of molecules with large amplitude torsional degrees of freedom (DoFs). This method goes beyond the traditional harmonic oscillator/rigid rotor or separable hindered rotor approximations in that it includes coupling between the torsion, the remaining vibrational modes, and the overall rotation. The method is based on the vibrationally adiabatic approximation whereby the torsional motion is assumed to be slow compared to the remaining vibrational DoFs although the nonseparability may be large. The torsional coordinate therefore parameterizes the rotational constants and the effective vibrational potential. A semiclassical method is then introduced to calculate the total state density in which the torsion is treated classically while the remaining coordinates are treated quantum mechanically. The method is also formulated for reactive problems in which the density of states is parameterized by a second large amplitude degree of freedom, the reaction coordinate. The performance of the method is assessed using the dissociation reaction of the hydrogen peroxide molecule and its isotopomers. It is found that the method performs well based on numerical tests. The torsional nonseparability is found to yield errors of factors of 2–3 in the statistical rate coefficient when compared with results of traditional separable models.  相似文献   

12.
王华胜  KVARAN 《物理化学学报》2007,23(10):1543-1552
测定了卤化氢(HCl, HBr 和HI) (2+1)共振增强多光子电离(REMPI)光谱, 采用模拟计算法分析推导出转动常数、谱带源以及Ω态振动谱带的同位素位移值. 得到的HCl数据同Green等人用常规分析法所推导的结果极为吻合. 得出8条振动谱带,其中包括V(1+)态, E(1+)的v'=4态以及HBr的5个新谱带, 此外还推导出HI的E态v'=1的4个振动谱带光谱参数. 观测了V和E态之间因同类相互作用而产生的不规则能级间距、转动参数和同位素位移. 讨论了HCl和HBr的E态和V态振动谱带中的转动谱线序列O和S对Q的强度比变化,提出了双光子激发机理.  相似文献   

13.
Variable-temperature infrared (IR) spectra of cyclohexane and IR and Raman spectra of chlorocyclohexane have been investigated by graphic eigenvalue analysis. Thermal effects known as peak shift and band broadening combined with heteroscedastic noise in vibrational bands are found to have severe influence on the interpretation of the outcome of rank analysis. Methods for correction of frequency shifts and band broadening in the spectral profiles due to temperature variation are developed and tested.  相似文献   

14.
Rotationally resolved IR spectra of M+ (H2O)Ar cluster ions for M=Na, K, and Cs in the O-H stretch region were measured in a triple-quadrupole mass spectrometer. Analysis of the spectra yields O-H stretch vibrational band origins and relative IR intensities of the symmetric and asymmetric modes. The effect of the alkali-metal ions on these modes results in frequency shifts and intensity changes from the gas phase values of water. The A-rotational constants are also obtained from the rotational structure and are discussed. Experimentally, the temperatures of these species were deduced from the relative populations of the K-rotational states. The internal energies and temperatures of the cluster ions for Na and K were simulated using RRKM calculations and the evaporative ensemble formalism. With binding energies and vibrational frequencies obtained from ab initio calculations, the average predicted temperatures are qualitatively consistent with the experimental values and demonstrate the additional cooling resulting from argon evaporation.  相似文献   

15.
Linear absorption spectra, resonance Raman spectra and excitation profiles, and two-photon-resonant hyper-Rayleigh and hyper-Raman scattering hyperpolarizability profiles are reported for the push-pull chromophore N,N-dipropyl-p-nitroaniline in seven solvents spanning a wide range of polarities. The absorption spectral maximum red shifts by about 2700 cm(-1), and the symmetric -NO2 stretch shifts to lower frequencies by about 11 cm(-1) from hexane to acetonitrile, indicative of significant solvent effects on both the ground and excited electronic states. The intensity patterns in the resonance Raman and hyper-Raman spectra are similar and show only a small solvent dependence except in acetonitrile, where both the Raman and hyper-Raman intensities are considerably reduced. Quantitative modeling of all four spectroscopic observables in all seven solvents reveals that the origin of this effect is an increased solvent-induced homogeneous broadening in acetonitrile. The linear absorption oscillator strength is nearly solvent-independent, and the peak resonant hyperpolarizability, beta(-2omega;omega,omega), varies by only about 15% across the wide range of solvents examined. These results suggest that the resonant two-photon absorption cross sections in this chromophore should exhibit only a weak solvent dependence.  相似文献   

16.
We report quantum dynamics calculations of F((2)P)+HCl(v,j)-->HF(v('),j('))+Cl((2)P) and F+DCl(v,j)-->DF(v('),j('))+Cl reactions at cold and ultracold temperatures. The effect of rotational and vibrational excitations of the HCl molecule on the reactivity is investigated. It is found that, in the ultracold regime, vibrational excitation of the HCl molecule from v=0 to v=2 enhances the reactivity by four orders of magnitude. The rotational excitation from j=0 to j=1 decreases the reactivity while the rotational excitation from j=0 to j=2 increases the reactivity. The overall effect of rotational excitation was found to be much smaller than vibrational excitation. The reactivity of the F+DCl system is significantly lower than that of the F+HCl case indicating the importance of quantum tunneling at low energies. For both reactions, Feshbach resonances corresponding to Fcdots, three dots, centered HCl or Fcdots, three dots, centeredDCl triatomic states occur at low energies. We also explored the validity of the coupled-states approximation for cold collisions taking the F+HCl(v=0,j=0) reaction as an illustrative example. It is found that the coupled-states approximation is generally valid for the background scattering even at low energies but it is inadequate to accurately describe the rich resonances in the energy dependence of the cross section resulting from the decay of van der Waals complexes. It is further shown that the coupled-states approximation cannot be used for scattering in the Wigner threshold regime when the molecule is initially in a rotationally excited level.  相似文献   

17.
18.
用分子动力学模拟方法研究了N2和O2水溶液的光谱性质.给出了能描述分子内部运动的溶质-溶剂相互作用势.对溶质和溶剂原子的速度自相关函数(VACF)作了计算.讨论了所得VACF的性质并计算了其谱密度.溶质分子振动谱出现的红移,与液态N2,O2的Raman实验结果相吻合.模拟得出的转动谱表明了溶剂分子对溶质转动运动的阻滞,模拟结果也表明VACF计算对溶液和液体光谱的研究十分有效.  相似文献   

19.
We show that it is possible to both directly measure and directly calculate Fermi resonance couplings in benzene. The measurement method used was a particular form of two-dimensional infrared spectroscopy (2D-IR) known as doubly vibrationally enhanced four wave mixing. By using different pulse orderings, vibrational cross peaks could be measured either purely at the frequencies of the base vibrational states or split by the coupling energy. This capability is a feature currently unique to this particular form of 2D-IR and can be helpful in the decongestion of complex spectra. Five cross peaks of the ring breathing mode nu13 with a range of combination bands were observed spanning a region of 1500-4550 cm(-1). The coupling energy was measured for two dominant states of the nu13+nu16 Fermi resonance tetrad. Dephasing rates were measured in the time domain for nu13 and the two (nu13+nu16) Fermi resonance states. The electronic and mechanical vibrational anharmonic coefficients were calculated to second and third orders, respectively, giving information on relative intensities of the cross peaks and enabling the Fermi resonance states of the combination band nu13+nu16 at 3050-3100 cm(-1) to be calculated. The excellent agreement between calculated and measured spectral intensities and line shapes suggests that assignment of spectral features from ab initio calculations is both viable and practicable for this form of spectroscopy.  相似文献   

20.
A composite coupled cluster methodology is used with systematic sequences of correlation consistent basis sets to accurately determine the structure, vibrational frequencies, and isotopic shifts for trans-HNNO ((2)A'), cis-HNNO ((2)A'), and ONHN ((2)A'). Anharmonic corrections to the vibrational frequencies and rotational constants are obtained using density functional theory. With basis sets larger than double-zeta, large differences between restricted open-shell Hartree-Fock (ROHF)-based and unrestricted Hartree-Fock (UHF)-based coupled cluster harmonic frequencies are calculated, with the UHF-based ones judged to be more reliable based on an analysis of the orbital hessian eigenvalues. The final calculated anharmonic vibrational band origins are generally in good agreement with the experimental values measured in rare gas matrices. The calculation of the vibrational band origins of the isovalent NO(2) molecule at similar levels of theory exhibits an agreement with experiment to within a few wavenumbers. In the latter case, however, a ROHF treatment was required since the UHF approach failed to provide realistic frequencies for the antisymmetric stretching mode. The heat of formation at 0 K of trans-HNNO is calculated to be 50.5 ± 0.5 kcal∕mol using a very similar composite coupled cluster methodology as in the structure and harmonic frequency determinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号