首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0,m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.  相似文献   

2.
The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range of practical applications. However, this is a computationally difficult problem due to the large size of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospectral method is used to reduce the number of grid points required per wavelength for accurate simulations. The model is based on coupled first-order acoustic equations valid for nonlinear wave propagation in heterogeneous media with power law absorption. These are derived from the equations of fluid mechanics and include a pressure-density relation that incorporates the effects of nonlinearity, power law absorption, and medium heterogeneities. The additional terms accounting for convective nonlinearity and power law absorption are expressed as spatial gradients making them efficient to numerically encode. The governing equations are then discretized using a k-space pseudospectral technique in which the spatial gradients are computed using the Fourier-collocation method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for dense computational grids compared to conventional finite difference methods. The accuracy and utility of the developed model is demonstrated via several numerical experiments, including the 3D simulation of the beam pattern from a clinical ultrasound probe.  相似文献   

3.
A numerical model for describing the counterpropagation of one-dimensional waves in a nonlinear medium with an arbitrary power law absorption and corresponding dispersion is developed. The model is based on general one-dimensional Navier-Stokes equations with absorption in the form of a time-domain convolution operator in the equation of state. The developed algorithm makes it possible to describe wave interactions in the presence of shock fronts in media like biological tissue. Numerical modeling is conducted by the finite difference method on a staggered grid; absorption and sound speed dispersion are taken into account using the causal memory function. The developed model is used for numerical calculations, which demonstrate the absorption and dispersion effects on nonlinear propagation of differently shaped pulses, as well as their reflection from impedance acoustic boundaries.  相似文献   

4.
Frequency-dependent attenuation typically obeys an empirical power law with an exponent ranging from 0 to 2. The standard time-domain partial differential equation models can describe merely two extreme cases of frequency-independent and frequency-squared dependent attenuations. The otherwise nonzero and nonsquare frequency dependency occurring in many cases of practical interest is thus often called the anomalous attenuation. In this study, a linear integro-differential equation wave model was developed for the anomalous attenuation by using the space-fractional Laplacian operation, and the strategy is then extended to the nonlinear Burgers equation. A new definition of the fractional Laplacian is also introduced which naturally includes the boundary conditions and has inherent regularization to ease the hypersingularity in the conventional fractional Laplacian. Under the Szabo's smallness approximation, where attenuation is assumed to be much smaller than the wave number, the linear model is found consistent with arbitrary frequency power-law dependency.  相似文献   

5.
6.
A three-dimensional time-domain algorithm,which is based on the augmented KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation,is proposed to simulate the nonlinear field of the parametric array.First,KZK equation is transformed into TBE(Transformed beam equation). Then,the effects of diffraction(in parabolic approximation),thermoviscous absorption,relaxation, and nonlinearity are solved with finite difference methods.The numerical results of this code agree well with the theoretical and experimental results presented in previous studies, which demonstrates the validity of the three-dimensional algorithm.Using this code to calculate the nonlinear field of the parametric array in air,it is found that the small time interval is important to the accuracy of the simulation results of the difference frequency wave in the case of high sound pressure level,and the errors caused by taking relaxation absorption for thermoviscous absorption are influenced by the characteristic frequency.  相似文献   

7.
An efficient Green's function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.  相似文献   

8.
Acoustic waves in tissues and weakly attenuative fluids often have an attenuation parameter, alpha(omega), satisfying alpha(omega)= alpha0omegay in which alpha0 is a constant, omega is the frequency, and y is between 1 and 2. This power law attenuation is not predicted by the classical thermoviscous wave equation and researchers have proposed different modified viscous wave equations in which the loss term is a convolution operator or a fractional spatial or temporal derivative. In this paper, acoustic waves undergoing power law attenuation are modeled by a modification to the thermoviscous wave equation in which the time derivative of the viscous term is replaced by a fractional time derivative. An explicit time domain, finite element formulation leads to a stable algorithm capable of simulating axisymmetric, broadband acoustic pulses propagating through attenuative and dispersive media. The algorithm does not depend on the Born approximation, long wavelength limit, or plane wave assumptions. The algorithm is validated for planar and focused transducers and results include radiation patterns from a viscous scatterer in a lossless background and signals reflected from a viscous layer. The program can be used to determine scattering parameters for large, strong, possibly viscous scatterers, in either a lossless or viscous background, for which analytic results are scarce.  相似文献   

9.
This work presents a lossy partial differential acoustic wave equation including fractional derivative terms. It is derived from first principles of physics (mass and momentum conservation) and an equation of state given by the fractional Zener stress-strain constitutive relation. For a derivative order α in the fractional Zener relation, the resulting absorption α(k) obeys frequency power-laws as α(k) ∝ ω(1+α) in a low-frequency regime, α(k) ∝ ω(1-α/2) in an intermediate-frequency regime, and α(k) ∝ ω(1-α) in a high-frequency regime. The value α=1 corresponds to the case of a single relaxation process. The wave equation is causal for all frequencies. In addition the sound speed does not diverge as the frequency approaches infinity. This is an improvement over a previously published wave equation building on the fractional Kelvin-Voigt constitutive relation.  相似文献   

10.
目前,针对空间电磁场作用有耗介质层上传输线的电磁耦合,仍缺乏有效的数值分析方法.因此,本文提出一种高效的时域混合算法,很好地解决了有耗介质层上传输线电磁耦合建模难的问题.首先,对经典传输线方程进行改进,推导了适用于有耗介质层上多导体传输线电磁耦合分析的修正传输线方程.然后,结合时域有限差分方法和相应插值技术,求解修正传输线方程,获得多导线及其端接负载上的电压和电流响应,并实现空间电磁场辐射与多导线瞬态响应的同步计算.最后,通过相应计算实例的数值模拟,与CST软件的仿真结果进行对比,验证了时域混合算法的正确性和高效性.  相似文献   

11.
范文萍  蒋晓芸 《物理学报》2014,63(14):140202-140202
研究了Caputo导数定义下带有分数阶热流条件的一维时间分数阶热波方程及其参数估计问题.首先,对正问题给出了解析解;其次,基于参数敏感性分析,利用最小二乘算法同时对分数阶阶数α和热松弛时间τ进行参数估计;最后对不同的热流分布函数所构成的两个初边值问题,分别进行参数估计仿真实验,分析温度真实值和估计值的拟合程度.实验结果表明,最小二乘算法在求解时间分数阶热波方程的两参数估计问题中是有效的.本文为分数阶热波模型的参数估计提供了一种有效的方法.  相似文献   

12.
郭建丽  杨振军  李星亮  张书敏 《中国物理 B》2022,31(1):14203-014203
In the framework of nonlinear wave optics,we report the evolution process of a dipole breathing wave in lossy nonlocal nonlinear media based on the nonlocal nonlinear Schr?dinger equation.The analytical expression of the dipole breathing wave in such a nonlinear system is obtained by using the variational method.Taking advantage of the analytical expression,we analyze the influences of various physical parameters on the breathing wave propagation,including the propagation loss and the input power on the beam width,the beam intensity,and the wavefront curvature.Also,the corresponding analytical solutions are obtained.The validity of the analysis results is verified by numerical simulation.This study provides some new insights for investigating beam propagation in lossy nonlinear media.  相似文献   

13.
Our purpose in this paper is to describe the wave propagation in media whose attenuation obeys a frequency power law. To achieve this, a frequency-domain wave equation was developed using previously derived causal dispersion relations. An inverse space and time Fourier transform of the solution to this algebraic equation results in a time-domain solution. It is shown that this solution satisfies the convolutional time-domain wave equation proposed by Szabo [J. Acoust. Soc. Am. 96, 491-500 (1994)]. The form of the convolutional loss operator contained in this wave equation is obtained. Solutions representing the propagation of both plane sinusoidal and transient waves propagating in media with specific power law attenuation coefficients are investigated as special cases of our solution. Using our solution, comparisons are made for transient one-dimensional propagation in a medium whose attenuation is proportional to frequency with recently obtained numerical solutions of Szabo's equation. These show good agreement.  相似文献   

14.
杨震华  田世洪 《计算物理》1989,6(3):347-354
本文编制了三维数值模拟程序,考虑了电子在摇摆器(Wiggler)内纵向速度βz=υz/c<1的影响,考虑了电子在有质动力势阱中因"群聚"而引起的纵向空间电荷力的影响,考虑了电子束内静电波和激光场、Wiggler静磁波的三波相互作用对电子位相的影响等。对因"群聚"而引起的纵向电场满足的方程求出了近似的二维解析解,用4096个电子模拟求解了电子运动方程和光场方程。数值模拟的结果和Livermore实验室的实验结果进行了比较。结果表明,由于上述几项因素的考虑,我们的数值模拟结果和实验位基本一致,消除了文献[1,2,3]中出现的失谐曲线(detuning curve)峰值磁场漂移300-500高斯的差距。  相似文献   

15.
In this paper, we present an approach for seeking exact solutions with coefficient function forms of conformable fractional partial differential equations. By a combination of an under-determined fractional transformation and the Jacobi elliptic equation, exact solutions with coefficient function forms can be obtained for fractional partial differential equations. The innovation point of the present approach lies in two aspects. One is the fractional transformation, which involve the traveling wave transformations used by many articles as special cases. The other is that more general exact solutions with coefficient function forms can be found, and traveling wave solutions with constants coefficients are only special cases of our results. As of applications, we apply this method to the space-time fractional (2+1)-dimensional dispersive long wave equations and the time fractional Bogoyavlenskii equations. As a result, some exact solutions with coefficient function forms for the two equations are successfully found.  相似文献   

16.
The propagation characteristics of electromagnetic wave in lossy left-handed materials (LHM) are studied using finite-difference time-domain (FDTD) method base on auxiliary differential equation (ADE) technology. The LHM medium is realized with lossy Drude models for both the negative electric permittivity and the negative magnetic permeability. The discretized ADE-FDTD equations are derived in detail. The incident wave used in the simulation is a multiple cycle m-n-m pulses source. The term of Poynting's vector ExHy was calculated. These numerical results demonstrate conclusively that the phase velocity direction of electromagnetic wave propagation and the direction of the Poynting vectors are anti-parallel in LHM. The amplitude of electric field is reduced with the enhancive distance of LHM slab. It is also demonstrated that the energy of electromagnetic wave in the LHM slab is obviously attenuated, and the attenuation of energy becomes stronger with the angular plasma frequency ωp increasing. These results indicate that LHM stealth is effective in theory, and reasonable selection of the large negative index of refraction can greatly enhance its effectiveness.  相似文献   

17.
In this article, the Riccati sub equation method is employed to solve fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity in the sense of the conformable derivative. By using this method, new exact solutions involving parameters, expressed by generalized hyperbolic functions are obtained. This method presents a wider applicability for handling nonlinear fractional wave equations.  相似文献   

18.
Wave propagation of acoustic waves in porous media is considered. The medium is assumed to have a rigid frame, so that the propagation takes place in the air which fills the material. The Euler equation and the constitutive relation are generalized to take into account the dispersive nature of these media. It is shown that the connection between the fractional calculus and the behavior of materials with memory allows time-domain wave equations, the coefficients of which are no longer frequency dependent, to be worked out. These equations are suited for direct and inverse scattering problems, and lead to the complete determination of the porous medium parameters.  相似文献   

19.
Einstein's explanation of Brownian motion provided one of the cornerstones which underlie the modern approaches to stochastic processes. His approach is based on a random walk picture and is valid for Markovian processes lacking long-term memory. The coarse-grained behavior of such processes is described by the diffusion equation. However, many natural processes do not possess the Markovian property and exhibit anomalous diffusion. We consider here the case of subdiffusive processes, which correspond to continuous-time random walks in which the waiting time for a step is given by a probability distribution with a diverging mean value. Such a process can be considered as a process subordinated to normal diffusion under operational time which depends on this pathological waiting-time distribution. We derive two different but equivalent forms of kinetic equations, which reduce to known fractional diffusion or Fokker-Planck equations for waiting-time distributions following a power law. For waiting time distributions which are not pure power laws one or the other form of the kinetic equation is advantageous, depending on whether the process slows down or accelerates in the course of time.  相似文献   

20.
3维全电磁粒子模拟大规模并行程序NEPTUNE   总被引:4,自引:3,他引:1       下载免费PDF全文
 介绍了自主编制的3维全电磁粒子模拟大规模并行程序NEPTUNE的基本情况。该程序具备对多种典型高功率微波源器件的3维模拟能力,可以在数百乃至上千个CPU上稳定运行。该程序使用时域有限差分(FDTD)方法更新计算电磁场,采用Buneman-Boris算法更新粒子运动状态,运用质点网格法(PIC)处理粒子与电磁场的耦合关系,最后利用Boris方法求解泊松方程对电场散度进行修正,以确保计算精度。该程序初步具备复杂几何结构建模能力,可以对典型高功率微波器件中常见的一些复杂结构,如任意边界形状的轴对称几何体、正交投影面几何体,慢波结构、耦合孔洞、金属线和曲面薄膜等进行几何建模。该程序将理想导体边界、外加波边界、粒子发射与吸收边界及完全匹配层边界等物理边界应用于几何边界上,实现了数值计算的封闭求解。最后以算例的形式,介绍了使用NEPTUNE程序对磁绝缘线振荡器、相对论返波管、虚阴极振荡器及相对论速调管等典型高功率微波源器件进行的模拟计算情况,验证了模拟计算结果的可靠性,同时给出了并行效率的分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号