首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
朱翀  王同光  钟伟 《力学与实践》2013,35(5):17-22,90
广义致动盘方法是通过引入体积力代替叶片的致动盘技术与三维Navier-Stokes 方程相结合来获得风力机周围流场信息的一种方法. 该方法避免了花费大量网格与计算资源去求解风力机叶片的附面层,从而可以把更多的网格与计算资源用于风力机尾流流场的模拟,非常适合用于风力机尾流流场的研究. 以NH1500风力机为计算模型,将常规CFD (computational fluid dynamics) 方法与广义致动盘方法计算所得的叶片载荷分布进行比较,以验证广义致动盘方法的可行性. 然后使用广义致动盘方法对风场中串列风力机进行数值模拟,研究串列风力机之间间距变化时,上游风力机产生的尾流对下游风力机的干扰影响.  相似文献   

2.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

3.
A two-frame PIV (particle image velocimetry) technique was used to investigate the flow characteristics of a complicated propeller wake influenced by a hull wake. As the propeller is significantly affected by the hull wake of a marine vessel, measurements of the propeller wake under the hull wake are certainly needed for more reliable validation of numerical predictions. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both the upper and the lower propeller planes. The unstable propeller wake caused by the ship’s hull was interpreted in terms of turbulent kinetic energy (T KE) to obtain useful information for flow modeling. The unstable or unsteady phenomenon in the upper propeller wake was identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure with turbulent kinetic energy. Strong unsteadiness appeared in the second and higher modes, largely affecting the downstream flow characteristics. The first eigenmode can be used to appropriately identify the tip vortex positions even in the unstable downstream region, which are helpful for establishing reliable wake modeling.  相似文献   

4.
建立了Suboff潜艇流场、结构场和声场耦合模型,对其水下航行时流激引起的艇体低频结构振动及水下辐射噪声进行了研究。采用CFD方法对潜艇三维流场进行非定常计算,以此得到艇体表面的脉动力,并通过数据映射将该脉动力加载到潜艇有限元模型进行响应分析。以潜艇壳体响应结果为边界条件,采用声场精细积分算法对潜艇流激引起的水下辐射噪声进行预报,该算法可对Helmholtz边界积分方程(HBIE)中的弱奇异积分系数及近场积分系数进行自适应求解,当细化步数达到6时,积分以10-4的残差单调收敛。结果表明,流激作用下,潜艇水下辐射声功率及声辐射效率皆出现明显峰值,其中流激的线谱成份引起艇体受激强迫振动,辐射较强水声,宽带谱成份则引起艇体结构共振,可辐射更强的水声。因此,降低潜艇的流激噪声,需同时优化艇体型线及内部结构以改善伴流,降低湍流强度,重点是避免流激共振。  相似文献   

5.
高山  施瑶  潘光  权晓波  鲁杰文 《力学学报》2022,54(9):2435-2445
在水下连续发射过程中前一发航行体尾流会对后一发航行体运动姿态稳定性产生流动干扰现象. 因此, 研究尾流中涡旋结构演变机理对解决多弹体水下连续发射流动干扰难题具有重要的意义. 本文采用改进型分离涡模型与能量方程, VOF多相流模型与重叠网格技术相结合方法, 对航行体水下发射尾流演变过程开展精细化模拟研究, 其中模拟结果和实验吻合度较好, 验证了本文数值方法的有效性. 以航行体尾流区域为重点研究对象, 分析了尾流区瞬态流场分布, 讨论了横流强度和雷诺数对尾涡结构演变以及脉动压力分布特性的影响. 结果表明: 由于尾流区高速流体核心区与低速自由流相互作用导致Kelvin-Helmholtz不稳定现象出现, 可以清晰地发现涡旋结构在剪切力的作用下发生脱落. 在横流条件下, 航行体尾端脱落的涡环与涡腿形成发卡涡, 而多个发卡涡沿轴向间隔排列组成发卡涡包存在于尾流中. 随着横流强度增大, 形成多级发卡涡包结构, 而导致脉动压力二次峰值均出现的主要原因是尾流涡旋流场演变引起的. 随着雷诺数的增大, 尾流中由圆柱形涡和U型涡组成的二次涡结构逐渐明显, 不稳定性加强.   相似文献   

6.
马楷东  张瑞荣  郭鑫  许铭扬  浦玉学 《力学学报》2021,53(12):3389-3398
近年来对海洋资源的开发利用成为了社会的研究热点, 推动了国内外学者关于水下航行器各方面的研究工作. 其中航行器的外形设计是研究中较为重要的一部分, 直接影响其在水中行进时所表现流体性能的优劣. 自然界中存在的各种鱼类以其阻力性能好等优点吸引了科研工作者广泛关注. 为设计流体性能较好的航行器壳体外形, 本文将目光放在了双髻鲨身上, 它的头部就像一个水中翼, 帮助其在海洋中灵活的游动. 本文以其为仿生的对象, 首先建立模型分析了3种不同双髻鲨的头部减阻效果, 选定锤头双髻鲨的生物形体特征作为壳体外形特征曲线, 并结合工程实际设计了一种仿生机器鱼外形, 应用Ansys Mosaic 技术建立三维流场结构化网格模型, 对其进行Fluent仿真. 随后与目前主流的翼型壳体外形和回转体航行器外形进行对比, 重点研究其减阻性能. 通过仿真分析得出, 与上述两种常见的水下航行器相比, 仿双髻鲨模型在定常流场中表现出更优秀的流体性能. 本文还探究仿双髻鲨模型周围流场的特性, 对于减少航行器对周围流场干扰方面和改善航行器隐蔽性方面的研究有一定的指导意义, 同时也为水下航行器的设计提供新的方向.   相似文献   

7.
自由面对潜艇尾流场流动特性影响研究   总被引:2,自引:2,他引:0  
潜艇周围绕流场流动特性会影响潜艇的机动性能, 特别是近水面航行时, 自由面的存在会增大潜艇尾流场的复杂程度.为探究潜艇在近水面航行时自由液面对潜艇尾流场流动特性的影响机理,借助大型水下三维粒子图像测速技术开展潜艇尾流场流动特性研究.首先通过美国泰勒水池标准模型实验结果对试验方法准确性进行验证; 随后,用验证后的模型试验方法对潜艇尾流场进行测量,得到不同潜深工况、不同速度下的桨盘面轴向速度以及脉动速度,同时辅以数值模拟对试验无法测得的兴波波系及中纵剖面速度场加以补充,从兴波角度阐述了自由面对潜艇尾流场流动特性影响机理. 研究结果表明:潜艇在近水面航行时, 随着Fr增大,桨盘面处轴向速度云图中上方等值线整体趋于扁平化, 较4D潜深工况,1.5D潜深工况出现局部脉动速度极大值, 且脉动速度结构整体下移; 自由面存在时,艇体与自由面间流场速度明显增大, 特别在桨盘面区域, 流场速度明显提升.随着Fr增大, 桨盘面处的自由液面高度逐渐降低,这就导致了桨盘面位置出现更大的流体速度, 即造成了桨盘面伴流场挤压现象.   相似文献   

8.
The flow around a low-pressure turbine rotor blade with incoming periodic wakes is computed by means of DNS and LES. The latter adopts a dynamic sub-grid-scale model. The computed results are compared with time-averaged and instantaneous measured quantities. The simulation sreveal the presence of elongated flow structures, stemming from the incoming wake vorticity, which interact with the pressure side boundary layer. As the wake approaches the upstream half of the suction side, its vortical structures are stretched and align with the main flow, resulting in an impingement at virtually zero angle of attack. Periodically, in the absence of impinging wakes, the laminar suction side boundary layer separates in the adverse pressure gradient region. Flow in the laminar separation bubble is found to undergo transition via a Kelvin–Helmholtz instability. Subsequent impingement of the wake inhibits separation and thus promotes boundary layer reattachment. LES provides a fair reproduction of the DNS results both in terms of instantaneous, phase-averaged, and time-averaged flow fields with a considerable reduction in computational effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
低雷诺数流动对高空动力装置, 特别是涡轮部件的性能产生重要的影响. 本文采用具有7阶精度的差分格式, 通过直接求解二维瞬态可压缩Navier-Stokes方程组, 对雷诺数为241 800 (基于叶片弦长)时的叶片表面带有热传导效应的平面涡轮叶栅流动进行了二维直接数值模拟, 对低雷诺数平面涡轮叶栅流动的非定常流动现象作了初步的探索.数值结果表明:在叶栅通道入口处, 流场的非定常性很弱;在叶栅尾缘处, 具有正负涡量的尾涡交替地从压力面和吸力面上脱落;周期性的涡脱落使得叶栅通道内和尾迹区的总压发生(准)周期的变化, 并且, 尾迹区总压变化主频率是通道内总压变化主频率的2倍;在时均流场中, 叶片表面压力的分布与实验值吻合良好, 表征热传导效应的斯坦顿数除湍流区外与实验值基本吻合;尾迹区速度脉动的2阶统计量与圆柱绕流尾迹区速度脉动2阶统计量具有基本相似的分布特征.  相似文献   

10.
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.  相似文献   

11.
The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.  相似文献   

12.
Flow measurement around a model ship with propeller and rudder   总被引:1,自引:0,他引:1  
For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.  相似文献   

13.
One of the major problems confronted by the designer of submersibles is to minimize the weight of the pressure hull for increasing the payload of a crew and necessary equipment and to simultaneously enhance the strength of the pressure hull for withstanding hydrostatical pressure, underwater explosive loading and other environmental loading. Hence, this paper presents the optimal design of a small-scale midget submersible vehicle (MSV) pressure hull with a ring-stiffened cylinder and two hemispherical ends subjected to hydrostatic pressure, using a powerful optimization procedure combined the extended interior penalty function method (EIPF) with the Davidon-Fletcher-Powell (DFP) method. According to the above optimum design results, we built up midget submersible vehicle finite element model. Then, the coupled acoustic–structural arithmetic from the widely used calculation program of the finite element – ABAQUS, was used to simulate and analyze the transient dynamic response of a midget submersible vehicle pressure hull that experiences loading by an acoustic pressure shock wave resulting from an underwater explosion (UNDEX). The analytical results are presented which will be used in designing stiffened optimum submersible vehicle so as to enhance resistance to underwater shock damage.  相似文献   

14.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

15.
The three-dimensional flow structures of a queue of studied model vehicles (i.e., one-, two- and three-vehicle cases) were investigated comprehensively in a closed-circuit wind tunnel using particle image velocimetry (PIV) for the typical urban vehicle speeds (i.e., 10, 30 and 50 km/h). In this three-dimensional vehicle wake, a pair of longitudinal vortices is characterized by counter-rotating and moving downstream at relatively low velocity than their surrounding flow. The flow structures of multiple studied model vehicles are dominated by the wake generated from the last studied model vehicle but the preceding studied model vehicle(s) also has/have some minor effects. Cross-sectional turbulence distribution is non-uniform in the far-wake region for all studied cases. The lowest turbulence occurs at the center part of the vehicle wake while high turbulence occurs at its two sides. As such, it may lead to considerable underestimation in turbulence magnitude if the measurement is only taken along the centerline of the vehicle wake.  相似文献   

16.
A finite-difference procedure has been developed for the prediction of three-dimensional rotor blade-vortex interactions. The interaction velocity field was obtained through a non-linear superposition of the rotor flow field, computed using the unsteady three-dimensional Euler equations, and the embedded vortex wake flow field, computed using the law of Biot-Savart. In the Euler model, near wake rotational effects were simulated using the surface velocity ‘transpiration’ approach. As a result, a modified surface boundary condition was prescribed and enforced at each time step of the computations to satisfy the tangency boundary condition. For supercritical interactions using an upstream-generated vortex, accuracy of the numerical results were found to rely on the user-specified vortex core radius and vortex strength. For the more general self-generated subcritical interactions, vortex wake trajectories were computed using the lifting-line helicopter/rotor trim code CAMRAD. For these interactions, accuracy of the results were found to rely heavily on the CAMRAD-predicted vortex strength, vortex orientation with respect to the blade, and to a large extent on the user-specified vortex core radius. Results for the one-seventh scale model OLS rotor and for a non-lifting rectangular blade having a NACA0012 section are presented. Comparisons with the experimental windtunnel data are also made.  相似文献   

17.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

18.
The turbulent flow of air caused by the spinning of a single disk inside a typical hard disk drive casing is calculated using large eddy simulation (LES). The pressure acting on the disk is recorded as a function of time and is used to compute the vibrations of the spinning disk using a self-developed hybrid-spectral finite-difference code. This unidirectional fluid–structure interaction problem is computed for two commonly occurring cases: a disk actuated on one side only (Case 1) and a disk actuated on both sides (Case 2). The pressure loading on the disk is characterized in terms of its mean, root-mean-square (r.m.s.) and its spectral content. The mean pressure acting on the disk is asymmetrical in the case where the disk is actuated on one side only, leading to a mean deformation of the disk to one side. The r.m.s. vibrations of Case 2 are higher than those for Case 1 and their spectral distributions are almost identical. Large pressure fluctuations of the flow are found in the wake of the actuator arm and near the region where the shroud expands to accomodate the actuator. The spectral content of the excitation force due to the pressure is mainly in the low kHz frequency range, while higher frequencies are seen at the disk edge. This typically results in the excitation of the first 3–4 modes of the disk; however, (asymmetric) Case 1 displays the excitation of higher modes compared with (symmetric) Case 2.  相似文献   

19.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
简单Green函数法模拟三维水下爆炸气泡运动   总被引:16,自引:1,他引:16  
姚熊亮  张阿漫 《力学学报》2006,38(6):749-759
假定水下爆炸气泡脉动阶段的流场是无旋、不可压缩的,运用势流理论导出气泡边界面运动的控制方程,采用高阶曲面三角形单元离散了维气泡表面,用边界积分法求解气泡的运动.并将计算结果与Rayleigh-Plesset气泡模型和试验数据进行对比分析,分析结果表明高阶曲面单元能够高精度的模拟水下爆炸气泡运动,且比线性单元有多方面的优越性.分别模拟了有、无重力场和刚壁时对气泡运动的影响,并预测了气泡在流场中膨胀、坍塌、迁移、射流形成等苇要动力学行为,同时建立了水下爆炸气泡与圆柱简相互作用的三维模型,模拟了自由液面、圆柱筒附近三维气泡的动力学特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号