首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
Two novel cyclotriphosphazene derivatives containing 6-(4-hydroxyphenyl)-2,2'-bipyridine(hopbp)side groups,N_3P_3(dobp)_2(hopbp)_2(1)and N_3P_3(dobp)(hopbp)_4(2)(dobp=2,2'-dioxybiphenyl),were synthesized and characterized.These compounds display strong fluorescent emission both in solution and in solid state.Their absorption and emission spectra are sensitive to proton:the addition of HBF4 to the methanol and dichloromethane solution(9∶1,volume ratio)of compound 1 led to a red-shift from 350 to 460 nm for the emission spectrum,and the process was also characterized by isosbestic points of absorption spectra at 267,287 and 313 nm.  相似文献   

2.
[Ru(bpy)3]2+/MCM-41 composite material obtained by loading tris(2,2′-bipyridine)ruthenium(Ⅱ)([Ru(bpy)3]2+) in siliceous mesoporous MCM-41 was characterized by X-ray powder diffraction, UV-Vis absorption and emission spectroscopies. The absorption spectrum of [Ru(bpy)3]2+/MCM-41 is similar to that of [Ru(bpy)3]2+ aqueous solution, whereas its emission spectrum exhibits hypsochromic shift compared to the solution spectrum. On the other hand, the peak position of the emission spectrum of [Ru(bpy)3]2+/MCM-41 shifts towards longer wavelength when the loading amount increases.  相似文献   

3.
Four novel Cu(Ⅰ) complexes,[Cu(o-PYO)(PPh3)2]BF4(1),[Cu(o-PYO)(DPEphos)]BF4(2),[Cu2 (o-PYO)(PPh3)3(CH3CN)](BF4)2(3) and [Cu2(o-PYO)(DPEphos)2 ](BF4)2(4) (o-PYO=2,5bis(pyridyl)-1,3,4-oxadiazole,PPh 3=triphenylphosphine,DPEphos=bis(2-(diphenylphosphanyl)phenyl)ether),have been synthesized and characterized by 1 H NMR,elemental analysis and single-crystal X-ray diffraction.The central cuprous ions in all complexes are surrounded by N and P atoms to form a distorted tetrahedral geometry,although one of the cuprous ions in complex 3 is coordinated by a PPh3 and an acetonitrile molecule due to the steric hindrance and weak coordination ability from monodentate PPh3 ligand.The UV-vis absorption spectra in CH2Cl2 show the characteristic metal-to-ligand charge transfer (MLCT) absorption bands in the region of 360-480nm.Four Cu(I) complexes exhibit yellow to orange-red phosphorescence with the emission maximum at 572,577,562 and 597nm,respectively in the solid state.  相似文献   

4.
5,10, 15-Triphenyl-20-{2- [α- (adenine-9 ) acetylamino]} phenyl porphyrin ( 1 ), 5,10, 15-triphenyl-20-{2-[α-(cytosine-1)acetylamino]} phenyl porphyrin (2), 5, 10, 15-triphenyl-20-{4-[α-(cytosine-1)ethoxy]} phenyl porphyrin (3) and their zinc complexes Zn-1, Zn-2 and Zn-3 have been prepared and characterized by ^1H NMR spectra, elemental analyses, electronic absorption spectra and mass spectra (FAB). Intramolecular π-π interactions and intramolecular metal-~ interaction for 1, 2, Zn-1,and Zn-2 have been investigated by several methods. ^1H NMR studies demonstrate that the porphyrin π-system in 1 and 2 is parallel to the adenine and the cytosine aromatic ring, respectively. The electronic absorption spectral properties of free porphyrin derivatives and their zinc complexes have been compared with those of H2TPP and ZnTPP. The results show that the UV-vis spectra of 1 and 2 are the same as that of H2TPP,whereas the spectra of their zinc complexes show 7 nm red shifts of the Soret bands compared to that of ZnTPP. The emission spectra of Zn-1 and Zn-2 are independent of excitation wavelength. From combination of the evidence of absorption and emission spectra it is suggested the existence of intramolecular metal-π interaction in Zn-1 and Zn-2. The results of conformational analysis agreed quite nicely with that of experiments, thus it was further to validate the experimental conclusions.  相似文献   

5.
The molecular geometries, frontier molecular orbital properties, and absorption and emission properties of three 4-phenoxy-1,8-naphthalimide derivatives, namely 4-phenoxy-N-(2-hydroxyethyl)-1,8-naphthalimide(1),4-(2-tert-butylphenoxy)-N-(2-hydroxyethyl)-1,8-naphthalimide(2), and 4-[2,4-di(tert-butyl)]phenoxy-N-(2-hydroxyethyl)-1,8-naphthalimide(3), are investigated by density functional theory(DFT) and time-dependent density functional theory(TD-DFT) calculations in conjunction with polarizable continuum models(PCMs). Four functionals and ten basis sets are employed for 1 to calculate the electron transition energies, which were compared with the experimental observations. Our results reveal that the B3LYP/6-311+G(d,p) method is the best choice to reproduce the experimental spectra. Moreover, the effects of substituents on the molecular geometries, electronic structures, absorption and emission spectra are also studied at the B3LYP/6-311+G(d,p) level. We find that the gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) decreases with increasing the number of tert-butyl substituents onto the phenoxy groups, suggesting red-shift of the absorption and emission bands. This is related to the increase of conjugation from 1 to 2 and 3. Our calculations are in good agreement with the experimental results.  相似文献   

6.
A silylated-terpyridine(Si TPy) derivative was newly synthesized and reacted with various transition metal ions in the solutions and self-assembled monolayers(SAMs).Composition and morphology of the SAMs were characterized by using absorption spectra,X-ray photoelectron spectra and atomic force microscope.The silylated-TPy compound gave off a luminescent emission at about 456 nm,which slightly shifted to 452 nm in the Zn2+-Si TPy and Fe2+-Si TPy metalated complexes.The absorbed energy can be further transferred to lanthanide ions(Tb3+and Eu3+) to give off the typical emissions of the lanthanide complexes together with an emission of the silylated-TPy at about 363 nm.  相似文献   

7.
The complexes [Pt2L2(μ-dppm)](ClO4)2 (1) and {[Pt2L2(μ-dppm)Li(CH3CN)2](ClO4)3}n (2), where HL is 6-[4-(diethoxyphosphorylmethyl)phenyl]-2,2′-bipyridinyl and dppm is bis(diphenylphosphino)methane, have been synthesized and characterized. In complex 1 the platinum(Ⅱ) center adopts a distorted square planar coordination geometry. The polymer 2 exhibits a "stairstep" configuration with one-dimensional Pt(Ⅱ)N^N^CPO- Li(Ⅰ)-OPC^N^ NPt(Ⅱ) mixed-metal units which are linked through dppm. Both complexes have metal-metal interaction with Pt- Pt distances of 3.325(2) and 3.1432(9) A, respectively, and display strong metal-metal-to-ligand charge-transfer (MMLCT) triplet state emission. The density-functional-theory calculation was used to interpret the absorption spectra of the complexes.  相似文献   

8.
Several ruthenium complexes are prepared and the absorption and emission spe-ctra of their solutions in EtOH-MeOH at room temperature are reported. The emis-sial maxima of three complexes 4-substituted 2,2′-bipyridyls occur between 550-650 nm, there is strong absorption down to 500 nm as dyes for possible use in lumine-scent solar collectors.  相似文献   

9.
Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene](MEH-PPV)solutions with different concen-trations were prepared in chloroform for different ultrasonication times.The ultraviolet absorption and photoluminescence(PL)spectra of the MEH-PPV solutions were measured,and the electronic states of the polymer chains under different experimental conditions were studied.The results showed that the effects of ultrasonication on the dilute and concentrated solutions were different.After ultrasonication,the intensity of the absorption peak at 280 nm significantly decreased,relative to the absorption peak at 500 nm for both dilute and concentrated solutions,indicating that the proportion of the two excited states in the polymer chains had changed.For dilute MEH-PPV solutions,the blue-shifted absorption(at about 500 nm)and PL spectra show that ultrasonication also led to polymer chain degradation and thus shortened the effective conjugation length.For concentrated solutions,however,the peak positions of the absorption spectra remained unchanged.In addition,the effects of the solution temperatures on the optical spectra for the MEH-PPV solutions were also discussed.  相似文献   

10.
The title compound α,α′-bis(3,5-bismethyl-pyrozole-N-yl)-carbene-acetyl-isopropenyl hydrazine (C16H22N6O, Mr = 314.40) has been prepared. It was characterized by elemental analysis as well as IR, MS, ^1H-NMR and ^13C-NMR spectra. Its crystal structure was determined by single-crystal X-ray diffraction, getting the following data: triclinic, space group P1^- with a = 6.9734(16), b = 10.773(3), c = 12.001(3)A, α = 75.311(4), β = 82.695(4), ),γ = 77.143(4)°, Z = 2, V = 847.9(3)A^3, Dc = 1.231 g/cm^3, F(000) = 336 and/μ(MoKα) = 0.082 mm^-1 (λ= 0.71073A). The results of crystal structure determination show that there exist intermolecular and intramolecular hydrogen bonds, resulting in a two-dimensional supramolecular framework of the title compound. The binding of the title compound to DNA was investigated by absorption, emission, and viscosity measurements. The title compound shows absorption hyperchromicity accompanied by a blue shift at about 254 nm. The binding constant Kb for the title compound has been determined to be 1.89 × 10^4 M^-1 from absorption measurements. The addition of the title compound to DNA pretreated with EB causes appreciable reduction in the emission intensity, indicating that the DNA-bound EB fluorophore is partially replaced by the title compound. The value of K is 3.093 × 10^4 M^-1. The relative viscosity of DNA decreased with the addition of the title compound. Results suggest that the title compound binds to DNA with a non-classical intercalative or groove interaction mode. The observed efficient nuclease activity of the title compound is interesting and may have further influences on the chemistry of DNA minor groove binders.  相似文献   

11.
A series of mono- and dinuclear Ru(bpy)(2) complexes (bpy = 2,2'-bipyridine) containing 2,2'-bis(benzimidazol-2-yl)-4,4'-bipyridine (bbbpyH(2)) were prepared. The mononuclear complex [Ru(bpy)(2)(bbbpyH(2))](ClO(4))(2).CH(3)OH.4H(2)O was characterized by an X-ray structure determination. Crystal data are as follows: triclinic, space group P&onemacr;, a = 14.443(4) ?, b = 15.392(4) ?, c = 11.675(2)?, alpha = 101.44(2) degrees, beta = 107.85(2) degrees, gamma = 96.36(2) degrees, V = 2380(1) ?(3), Z = 2. The coordination geometry of the ruthenium(II) ion is approximately octahedral. The dihedral angle between the two pyridyl rings in bbbpyH(2) is 9.4(3) degrees, which is close to coplanar, in the complex. Mono- and dinuclear complexes exhibit broad charge-transfer absorption bands at 420-520 nm and emission at 660-720 nm in CH(3)CN solution with lifetimes of 200-800 ns at room temperature. Transient difference absorption spectra and resonance Raman (rR) spectra were used to assign the charge-transfer bands in the 420-520 nm region and to identify the lowest excited states. Both absorption and emission spectra are sensitive to solvent and solution pH. Deprotonation of the dinuclear complex raises the energies of the pi orbitals of the bbbpyH(2) ligand, so that they become closer in energy to the pi orbitals of bpy. The intervalence band of [(bpy)(2)Ru(bbbpyH(2))Ru(bpy)(2)](5+)()()is observed at 1200 nm ( epsilon = 170 M(-)(1) cm(-)(1)) in CH(3)CN. The value of the electronic coupling matrix element, H(AB), was determined as 120 cm(-)(1). Upon deprotonation, the IT band was not observed. It is therefore concluded that a superexchange pathway occurs predominantly via the Ru(II) dpi-bbbpyH(2) pi interaction, since deprotonation decreases the interaction. The role of the intervening fragments in the bridging ligand is discussed from the viewpoint of orbital energies and their orbital mixing with Ru dpi orbitals.  相似文献   

12.
Four new heteroleptic ruthenium sensitizers [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(L)(NCS)(2)] (L = 5,5'-bis(4-octylthiophen-2-yl)-2,2'-bipyridine (1), 5,5'-bis(N,N-diphenyl-4-aminophenyl)-2,2'-bipyridine (2), 5,5'-bis(5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (3) and 5,5'-bis(4-octyl-5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (4)) were synthesized, characterized by physicochemical and computational methods, and utilized as photosensitizers in nanocrystalline dye-sensitized solar cells (DSSCs). The λ(max) of the metal-to-ligand charge transfer (MLCT) absorption of these four ruthenium dyes (527 nm for 1, 535 nm for 2, 585 nm for 3 and 553 nm for 4) can be tuned by various structural modifications of the ancillary ligand and it was shown that increasing the conjugation length of such ligand reduces the energy as well as the molar absorption coefficient of the MLCT band. The maximum incident photon to current conversion efficiency (IPCE) of 41.4% at 550 nm, 38.6% at 480 nm, 39.4% at 470 nm and 31.1% at 480 nm for 1-, 2-, 3- and 4-sensitized solar cells were obtained. Respectable power conversion efficiencies of 3.00%, 2.51%, 2.00% and 2.03% were realized, respectively, when the sensitizers 1, 2, 3 and 4 were used in DSSCs under the standard air mass (AM) 1.5 sunlight illumination (versus 5.9% for standard N719).  相似文献   

13.
We have synthesized ruthenium(II) polypyridyl complexes (1) Ru(II)(bpy)(2)(L(1)), (2) Ru(II)(bpy)(2)(L(2)) and (3) Ru(II)(bpy)(L(1))(L(2)), where bpy = 2,2'-bipyridyl, L(1) = 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) and L(2) = 4-(N,N-dimethylamino-phenyl)-(2,2'-bipyridine) and investigated the intra-ligand charge transfer (ILCT) and ligand-ligand charge transfer (LLCT) states by optical absorption and emission studies. Our studies show that the presence of electron donating -NMe(2) functionality in L(2) and electron withdrawing catechol fragment in L(1) ligands of complex 3 introduces low energy LLCT excited states to aboriginal MLCT states. The superimposed LLCT and MLCT state produces redshift and broadening in the optical absorption spectra of complex 3 in comparison to complexes 1 and 2. The emission quantum yield of complex 3 is observed to be extremely low in comparison to that of complex 1 and 2 at room temperature. This is attributed to quenching of the (3)MLCT state by the low-emissive (3)LLCT state. The emission due to ligand localized CT state (ILCT and LLCT) of complexes 2 and 3 is revealed at 77 K in the form of a new luminescence band which appeared in the 670-760 nm region. The LLCT excited state of complex 3 is populated either via direct photoexcitation in the LLCT absorption band (350-700 nm) or through internal conversion from the photoexcited (3)MLCT (400-600 nm) states. The internal conversion rate is determined by quenching of the (3)MLCT state in a time resolved emission study. The internal conversion to LLCT and ILCT excited states are observed to be as fast as ~200 ps and ~700 ps for complexes 3 and 2, respectively. The present study illustrates the photophysical property of the ligand localized excited state of newly synthesized heteroleptic ruthenium(II) polypyridyl complexes.  相似文献   

14.
张俊峰  甘欣  傅文甫 《化学学报》2007,65(11):1071-1075
通过亲核取代反应, 在2,2'-联苯二酚氧基环氯磷腈母体N3P3(O2C12H8)2Cl2 (1)和N3P3(O2C12H8)Cl4 (2)上引入2-醛基吡啶与对胺基苯酚形成的席夫碱侧基, 合成了两种新型环磷腈化合物N3P3(O2C12H8)2(p-O-Ph-N=C-Py)2 (3)和N3P3(O2C12H8)(p-O-Ph-N=C-Py)4 (4), 这些化合物是一类能形成配合物的多齿配体. 通过元素分析, IR, 1H NMR, 31P NMR和TOFMS确定其结构, 研究了它们的吸收光谱和荧光光谱. H和Cu离子对其光谱性质的影响研究表明两种化合物的吸收和荧光光谱对H和Cu离子异常敏感, 因而在作为这些阳离子的荧光探针方面具有应用前景.  相似文献   

15.
Five platinum(II) 1,4,7-trithiacyclononane (ttcn) complexes with bidentate-substituted 2,2'-bipyridine ligands have been prepared and structurally characterized: [Pt(bpy)(ttcn)](PF6)2 (bpy = 2,2'-bipyridine), triclinic, P1, a = 10.2529(3) A, b = 10.7791(3) A, c = 10.7867(3) A, alpha = 83.886(1) degrees, beta = 87.565(1) degrees, gamma = 84.901(1), V = 1179.99(6) A3, Z = 2; [Pt(4,4'-dmbpy)(ttcn)](PF6)2 x CH3CN x H2O (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.1895(3) A, b = 11.8566(4) A, c = 13.1004(4) A, alpha = 77.345(1) degrees, beta = 79.967(1) degrees, gamma = 72.341(1) degrees, V = 1461.56(8) A3, Z = 2; [Pt(5,5'-dmbpy)(ttcn)](PF6)2 (5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.6397(4) A, b = 10.8449(4) A, c = 11.2621(4) A, alpha = 90.035(1) degrees, beta = 98.061(1) degrees, gamma = 91.283(1) degrees, V = 1286.32(8) A3, Z = 2; [Pt(dbbpy)(ttcn)](PF6)2 x CH3NO2 (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), triclinic, P1, a = 11.5422(7) A, b = 11.6100(7) A, c = 13.6052(9) A, alpha = 85.902(1) degrees, beta = 89.675(1) degrees, gamma = 74.942(1) degrees, V = 1755.90(19) A3, Z = 2; and [Pt(dtfmbpy)(ttcn)](PF6)2 x CH3CN (dtfmbpy = 5,5'-di-trifluoromethyl-2,2'-bipyridine): monoclinic, P2(1)/c, a = 13.1187(9) A, b = 20.9031(15) A, c = 11.3815(8) A, beta = 105.789(2) degrees, V = 3003.3(4) A3, Z = 4. For each salt, the platinum(II) center of the cation is bonded to two nitrogen atoms of the chelating diimine and two sulfur atoms of the thioether macrocycle. The third sulfur atom of ttcn forms a long apical interaction with the metal center (2.84-2.97 A), resulting in a flattened square pyramid structure. An examination of these and 17 other structures of platinum(II) ttcn complexes reveals a correlation between the apical Pt...S distance and the donor properties of the ancillary ligands, suggesting a means for using variations in ligand electronic properties to tune molecular structure. The room-temperature absorption spectra in acetonitrile solution show a broad and comparatively low-energy MLCT band maximizing near approximately 390 nm for the bpy and dialkyl-substituted bipyridyl derivatives. The maximum is dramatically red-shifted to 460 nm in the spectrum of the dtfmbpy complex as a result of the electron-withdrawing properties of the -CF(3) groups. The 3:1 EtOH/MeOH 77 K glassy solution emission spectra exhibit low-energy emission bands (lambdamax, 570-645 nm), tentatively assigned as originating from a lowest, predominantly spin-forbidden MLCT excited state that is stabilized by apical Pt...S interactions.  相似文献   

16.
Polynuclear copper(I) complexes with bridging bis(dicyclohexylphosphino)methane (dcpm) and iodide ligands, [Cu(2)(dcpm)(2)(CH(3)CN)(2)](BF(4))(2) (1), [Cu(2)(dcpm)(2)](BF(4))(2) (2), [(CuI)(3)(dcpm)(2)] (3), [(CuI)(4)(dcpm)(2)] (4), and [(CuI)(2)(dcpm)(2)] (5) were prepared and their structures determined by X-ray crystal analysis. The shortest Cu--Cu distance found in these complexes is 2.475(1) A for 3. Powdered samples of 1, 3, 4, and 5 display intense and long-lived phosphorescence with lambda(max) at 460, 626, 590, and 456 nm and emission quantum yields of 0.26, 0.11, 0.12, and 0.56 at room temperature, respectively. In the solid state, 2 displays both a weak emission at 377 and an intense one at 474 nm with an overall emission yield 0.42. The difference in emission properties among complexes 1-5 suggests that both Cu--Cu interaction and coordination around the copper(I) center affect the excited state properties. A degassed solution of 2 in acetone gives a bright red emission with lambda(max) at 625 nm at room temperature. The difference absorption spectra of the triplet excited states of 1-5 in acetonitrile show broad absorption peaks at 340-410 and 850-870 nm.  相似文献   

17.
A novel one-dimensional inorganic-organic hybrid gallophosphate compound, Ga(2,2′-bipy)(HPO4)· (H2PO4)(denoted JGP-2) was synthesized hydrothermally with 2,2′-bipyridine as a ligand and characterized by X-ray powder diffraction (XRD), elemental analysis, inductively coupled plasma(ICP), TGA analysis, solid-state 31P NMR, and luminescence spectra and structurally determined by single-crystal X-ray diffraction analysis. JGP-2 crystallized in the triclinic system, space group Pī(No.2), with a=0.7818(1) nm, b=0...  相似文献   

18.
Absorption and emission spectra of Pt(diimine)L2 complexes (diimine = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy); L = pyrazolate (pz-), 3,5-dimethylpyrazolate (dmpz-), or 3,4,5-trimethylpyrazolate (tmpz-)) have been measured. Solvent-sensitive absorption bands (370-440 nm) are attributed to spin-allowed metal-to-ligand charge-transfer (1MLCT) transitions. As solids and in 77 K glassy solution, Pt(bpy)(pz)2 and Pt(dmbpy)(pz)2 exhibit highly structured emission systems (lambda max approximately 494 nm) similar to those of the diprotonated forms of these complexes. The highly structured bands (spacings 1000-1400 cm-1) indicate that the transition originates in a diimine-centered 3(pi-->pi*) (3LL) excited state. The intense solid-state and 77 K glassy solution emissions from 3MLCT[d(Pt)-->pi*(bpy)] excited states of complexes with dmpz- and tmpz- ligands occur at longer wavelengths (lambda max = 500-610 nm), with much broader vibronic structure. These findings are consistent with increasing electron donation of the pyrazolate ligands, leading to a distinct crossover from a lowest 3LL to a 3MLCT excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号